
 
 

ROUGH SET BASED SPLITTING CRITERION FOR 
BINARY DECISION TREE CLASSIFIERS 

 
 
 
 
 
 
 
 

MASTER OF SCIENCE IN 
COMPUTER SCIENCE AND ENGINEERING 

 
 
 
 
 
 
 
 

DARIUSZ G. MIKULSKI 
 
 
 
 
 
 
 
 

OAKLAND UNIVERSITY 
 
 
 

2006 



Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number. 

1. REPORT DATE 
26 SEP 2006 

2. REPORT TYPE 
N/A 

3. DATES COVERED 
  -   

4. TITLE AND SUBTITLE 
Rough Set Based Splitting Criterion for Binary Decision Tree 
Classifiers 

5a. CONTRACT NUMBER 

5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 
Dariusz G. Mikulski 

5d. PROJECT NUMBER 

5e. TASK NUMBER 

5f. WORK UNIT NUMBER 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
US Army RDECOM-TARDEC 6501 E 11 Mile Rd Warren, MI 
48397-5000 

8. PERFORMING ORGANIZATION REPORT 
NUMBER 
16334 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 
TACOM/TARDEC 

11. SPONSOR/MONITOR’S REPORT 
NUMBER(S) 
16334 

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release, distribution unlimited 

13. SUPPLEMENTARY NOTES 

14. ABSTRACT 

15. SUBJECT TERMS 

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT 

SAR 

18. NUMBER
OF PAGES 

181 

19a. NAME OF
RESPONSIBLE PERSON 

a. REPORT 
unclassified 

b. ABSTRACT 
unclassified 

c. THIS PAGE 
unclassified 

Standard Form 298 (Rev. 8-98) 
Prescribed by ANSI Std Z39-18 



ROUGH SET BASED SPLITTING CRITERION FOR  
BINARY DECISION TREE CLASSIFIERS 

 
 
 

by 
 
 
 

DARIUSZ G. MIKULSKI 
 
 
 

A thesis submitted in partial fulfillment of the 
requirements for the degree of 

 
 
 

MASTER OF SCIENCE IN 
COMPUTER SCIENCE AND ENGINEERING 

 
 
 

2006 
 
 
 

Oakland University 
Rochester, Michigan 

 
 
 
 APPROVED BY: 
 
  
 

  
Djamel Bouchaffra, Ph.D., Chair Date 

 
  
Subramaniam Ganesan, Ph.D. Date 

 
  
Jia Li, Ph.D. Date 



 ii

 

 

 

 

 

 

 

 

 

 

© Copyright by Dariusz G. Mikulski, 2006 
All rights reserved 



 iii

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

To my family 



 iv

ACKNOWLEDGMENTS 
 
 
 
 To the people who meaningfully influenced my life during the course of this 

research, I thank you.  You were part of a collaborative experience that helped produce 

the work that you are reading.  Your support, encouragement, inspiration, and patience 

helped me to achieve a personal life goal; for that, I am truly grateful.  All I can hope is 

that you are proud of what you see and know of my sincere appreciation.  While I 

regrettably cannot name everyone who contributed to this research effort, I would be 

thoughtless if I did not at least mention the following people: 

• Dr. Djamel Bouchaffra, a brilliant man whom I truly admire.  Without his advice 

and support, this work would not have been possible. 

• My brother, Tommy, who spent countless hours proofreading this thesis, 

scrutinizing every sentence under the most stringent grammar rules. 

• Dr. Mark Brudnak, who taught me how to think like a researcher in the early 

stages of this thesis.  He also provided me his dissertation [8], which I used 

extensively as a “gold-standard” during my writing. 

• My parents, Aleksandra and Paweł, who both helped me during this thesis with 

life’s “little things” so I could focus on the research. 

• My beloved girlfriend, Kimberly, who helped me in ways that no one else could.  

Our closeness was a source of comfort during the tough parts of this thesis. 

 
 
  Dariusz G. Mikulski 



 v

ABSTRACT 
 
 
 

ROUGH SET BASED SPLITTING CRITERION FOR  
BINARY DECISION TREE CLASSIFIERS 

 
by 
 

Dariusz G. Mikulski 
 
 
Advisor: Djamel Bouchaffra, Ph.D. 
 
 
 Pattern recognition applications often use inductive reasoning to find hidden 

relationships and concepts within a data set.  Many computational models and heuristics 

exist to assist in induction [12, 14, 18, 22, 26, 37].  Even so, researchers continue to 

actively develop new inductive methods [8, 10, 45, 46].  The research in this thesis 

advances induction for pattern classification by presenting the derivation and 

application of a new measure of information based on rough set theory – the rough 

product.  The rough product helps us to understand the manner in which an attribute 

value partition affects the upper approximation for each decision class.  The thesis also 

presents an application of the rough product in a splitting criterion for binary decision 

tree classifiers.  Using a MATLAB® software tool that we developed for this research, 

we compare the performance of the Gini Index, Twoing Rule, Maximum Deviance 

Reduction, and Rough Product splitting criteria on various data sets using k-folds cross 

validation.  We determine performance by measuring the following metrics: accuracy, 

error rate, precision, recall, F-measure, node count, depth count, and complexity.  Our 

results suggest that, in the presence of noisy data, the Rough Product splitting criterion 



 vi

could construct binary decision trees that are simpler and shorter than those produced 

by the Gini Index, Twoing Rule, or Maximum Deviance Reduction splitting criteria. 



 vii

TABLE OF CONTENTS 
 
 
 
ACKNOWLEDGMENTS iv 
 
ABSTRACT v 
 
LIST OF TABLES x 
 
LIST OF FIGURES xi 
 
LIST OF ABBREVIATIONS xii 
 
DATA ON COMPACT DISC xiii 
 
CHAPTER ONE 
INTRODUCTION  1 
 
 Synopsis 
 
 1.1  General Problem 1 
 
 1.2  Research Objective 4 
 
 1.3  Contributions 4 
 
 Conclusion 
 
CHAPTER TWO 
DECISION TREE OVERVIEW 6 
 
 Synopsis 
 
 2.1  Decision Tree Description and Terminology 6 
 
 2.2  Decision Tree Time Complexity 8 
 
 2.3  Decision Tree Classifier Design 9 
 
  2.3.1 Data Preprocessing 10 
 
  2.3.2 Splitting Criteria 12 
 
  2.3.3 Stopping Criteria 14 



 viii

TABLE OF CONTENTS—Continued 
 
 
 
  2.3.4 Pruning Methods 15 
 
 Conclusion 
 
CHAPTER THREE 
ROUGH SET BASED DECISION TREE CONSTRUCTION 17 
 
 Synopsis 
 
 3.1  Rough Set Theory 17 
 
  3.1.1 Decision Tables 18 
 
  3.1.2 Indiscernibility 19 
 
  3.1.3 Rough Sets 20 
 
  3.1.4 Decision Rules 21 
 
 3.2  Past Research with Rough Set Based Feature Selection 23 
 
  3.2.1 PRESET Algorithm 23 
 
  3.2.2 ACRs Algorithm 24 
 
  3.2.3 Significance-Oriented Method 24 
 
  3.2.4 Support-Based Heuristics 25 
 
 3.3  The Rough Product 27 
 
  3.3.1 Derivation of the Rough Product 28 
 
  3.3.2 Example Rough Product Calculation 32 
 
  3.3.3 Rough Product Splitting Criterion for the Binary  
   Decision Tree 35 
 
 Conclusion 
 
 



 ix

TABLE OF CONTENTS—Continued 
 
 
 
CHAPTER FOUR 
SPLITTING CRITERION ANALYSIS THROUGH CROSS VALIDATION 38 
 
 Synopsis 
 
 4.1  Splitting Criterion Comparison Approach 38 
 
  4.1.1 Methodology 39 
 
  4.1.2 Metrics 39 
 
  4.1.3 Competing Splitting Criteria 43 
 
  4.1.4 Tree Evaluation Graphical User Interface 44 
 
 4.2  Experiments 49 
 
  4.2.1 Gaussian Distribution Cluster Data Sets 51 
 
  4.2.2 Real-World Data Sets 111 
 
 Conclusion 
 
CHAPTER FIVE 
CONCLUSIONS AND FUTURE WORK 150 
 
APPENDIX 
 
 EXPERIMENTAL RESULTS SUMMARY TABLES 152 
 
REFERENCES   161 
 



LIST OF TABLES 
 
 
 
Table 3.1 Empirical Data Example 18 
 
Table 3.2 Demonstration Decision Table 33 
 
Table 3.3 Indiscernibility Matrix for Attribute  33 1c
 
Table 4.1 Two Cases for Classifier Output Comparison 40 
 
Table 4.2 Attribute Value Designation for Case 1 41 
 
Table 4.3 Attribute Value Designation for Case 2 42 
 
Table A.1 Mean of Mean Accuracy (MMA) for the Fold Mean 153 
 
Table A.2 Mean of Mean Error Rate (MMER) for the Fold Mean 154 
 
Table A.3 Mean of Mean Precision (MMP) for the Fold Mean 155 
 
Table A.4 Mean of Mean Recall (MMR) for the Fold Mean 156 
 
Table A.5 Mean of Mean F-Measure (MMFM) for the Fold Mean 157 
 
Table A.6 Mean of Mean Node Count (MMNC) for the Fold Mean 158 
 
Table A.7 Mean of Mean Depth Count (MMDC) for the Fold Mean 159 
 
Table A.8 Mean of Mean Complexity (MMC) for the Fold Mean 160 
 

 x



 xi

LIST OF FIGURES 
 
 
 
Figure 2.1 A Decision Tree Classifier 7 
 
Figure 3.1 Visualization of a Rough Set 22 
 
Figure 4.1 Screenshot of the EvalTreeGUI software 45 
 
Figure 4.2 Screenshot of the Classification Tree Viewer 48 
 
Figure 4.3 External Output Plot 50 
 
Figure 4.4 Gaussian Experiment 1 52 
 
Figure 4.5 Gaussian Experiment 2a 62 
 
Figure 4.6 Gaussian Experiment 2b 72 
 
Figure 4.7 Gaussian Experiment 3a 82 
 
Figure 4.8 Gaussian Experiment 3b 92 
 
Figure 4.9 Gaussian Experiment 4a 102 
 
Figure 4.10 Gaussian Experiment 4b 112 
 
Figure 4.11 Wisconsin Breast Cancer Data Set 122 
 
Figure 4.12 Five Cancers Data Set 131 
 
Figure 4.13 United States Income Data Set 142 
 



 xii

LIST OF ABBREVIATIONS  
 
 
 
CART Classification and Regression Tree 
 
CDC Center for Disease Control and Prevention 
 
FN False Negative 
 
FP False Positive 
 
MDL Minimum Description Length 
 
MDR Maximum Deviance Reduction 
 
MMA Mean of Mean Accuracy 
 
MMC Mean of Mean Complexity 
 
MMDC Mean of Mean Depth Count 
 
MMER Mean of Mean Error Rate 
 
MMFM Mean of Mean F-Measure 
 
MMNC Mean of Mean Node Count 
 
MMP Mean of Mean Precision 
 
MMR Mean of Mean Recall 
 
NP Nondeterministic Polynomial 
 
NPCR National Program of Cancer Registries 
 
P Polynomial 
 
PASH Parameterized Average Support Heuristic 
 
TN True Negative 
 
TP True Positive 
 
WONDER Wide-ranging ONline Data for Epidemiologic Research 



 xiii

DATA ON COMPACT DISC 
 
 
 
Excel Data Sets 
 
1. Breast Cancer Wisconsin.xls 
 
2. Gaussian 1.xls 
 
3. Gaussian 2a.xls 
 
4. Gaussian 2b.xls 
 
5. Gaussian 3.xls 
 
6. Gaussian 3b.xls 
 
7. Gaussian 4.xls 
 
8. Gaussian 4b.xls 
 
9. Top Five Cancers.xls 
 
10. US Income.xls 
 
Test Results 
 
1. Breast Cancer Wisconsin.mat 
 
2. Gaussian 1.mat 
 
3. Gaussian 2a.mat 
 
4. Gaussian 2b.mat 
 
5. Gaussian 3.mat 
 
6. Gaussian 3b.mat 
 
7. Gaussian 4.mat 
 
8. Gaussian 4b.mat 
 
9. Top Five Cancers.mat 



 xiv

DATA ON COMPACT DISC—Continued 
 
 
 
10. US Income.mat 
 
MATLAB® Source Code 
 
1. bsearch.m – Performs a binary search for a number through a range of sorted 

numbers.  The function returns the index of the first number matching the search 
number. 

 
2. EvalTree.m – Evaluates a binary decision tree by measuring the accuracy, error rate, 

precision, recall, F-measure, node count, depth count, and complexity on a test data 
set. 

 
3. EvalTreeGUI.fig – Contains a complete description of the EvalTreeGUI layout and 

the components of the GUI: push buttons, menus, axes, and so on. 
 
4. EvalTreeGUI.m – Controls the EvalTreeGUI, including the callbacks for its 

components.  For a complete reference on this application, please refer to Section 
4.1.4. 

 
5. FixCatsplit.m – Changes the stored names of categorical splits in a decision tree 

structure from a number to their actual text names.  These modifications make 
constructed decision trees easier to understand in the Tree Viewer application. 

 
6. GetDataFromXls.m – Loads data from an Excel spreadsheet into an Object 

structure. 
 
7. IndexShuffle.m – Produces a randomly shuffled array of unique whole numbers 

from 1 to n. 
 
8. num2cellstr.m – Converts all elements of a two-dimensional array of numbers into a 

two-dimensional array of cell strings. 
 
9. obj2info.m – Converts an Object structure produced by GetDataFromXls into an 

information system representation. 
 
10. removenans.m – Replaces all NaN values in a two-dimensional array with an empty 

value. 
 
11. replacenans.m – Replaces all NaN values in a two-dimensional array with a user 

defined number. 
 



 xv

DATA ON COMPACT DISC—Continued 
 
 
 
12. replacevals.m – Replace all instances of a number in a two-dimensional array with 

another user defined number. 
 
13. roughtree.m – Constructs a binary decision tree using the Rough Product splitting 

criterion. 
 
14. stripvals.m – Produces a single-dimensional array of values consisting of the 

complement of the intersection of two arrays. 



 

  1

 
 
 

CHAPTER ONE 
 

INTRODUCTION 
 
 

Synopsis 
 

This chapter begins with Section 1.1, which discusses induction for pattern 

recognition and some difficulties associated with it.  Section 1.2 states our research 

objective.  Section 1.3 lists the contributions from the work in this thesis. 

 
1.1   General Problem

 
Pattern recognition is a natural and useful ability shared by all intelligent 

creatures.  Stimuli from the environment trigger countless instinctual and learned 

responses in the brain, causing it to make decisions based on patterns in the stimuli.  

Using this deceptively simple process, we are able to recognize faces, identify music on 

the radio, avoid foul smells, massage tense muscles, or savor the satisfaction of eating 

our favorite foods – just to name a few.  It is, therefore, not surprising that we would 

like to mimic this ability in the intelligent machines we build.  Currently, various 

researchers are actively developing pattern recognition systems in areas such as 

machine vision [3, 4, 19, 20, 28, 36, 40, 42], automotive design optimization [1, 5], 

control systems [8, 27], and genetics [6, 50]. 

Pattern recognition highly correlates to logical reasoning, since both areas 

classify the structure of statements and arguments.  Philosophers generally partition 



 

  2

logical reasoning into two major categories: inductive reasoning and deductive 

reasoning. 

In inductive reasoning, we form generalizations based on observations.  

However, we cannot assume these generalizations as true for all cases unless we 

observe all cases.  This presents a fundamental problem with induction: it assumes that 

an event in the future will always occur the same way as it has in the past.  There is no 

justification for this assumption – it is simply accepted, but unexplained.  The reason 

for this “faith” in induced models is that extreme skepticism is not practical for real-

world pattern recognition.  It is often simpler to understand the core concepts within a 

set of observations than to be able to explain every possible reason for why an 

observation occurred. 

In deductive reasoning, we form conclusions about observations based on 

generalizations.  Unlike inductive reasoning, we can formally prove a deduced 

conclusion as true if its premises are true.  For example, let us establish the following 

premises: (a) all trees consist of wood and (b) we observe several instances of wood 

burning.  If we assume these premises as true, then we can logically deduce that  

(c) some trees can burn.  However, since we did not observe all instances of wood 

burning, we cannot claim that all trees can burn. 

Deductive reasoning relies on generalizations that we usually produce with 

induction.  Therefore, for the pattern recognition paradigm, our goal is induce the most 

representative models for any set of observations.  Various researchers have proposed 

numerous supervised [4, 7, 16, 23, 33, 34, 35, 43, 44, 45, 46, 47, 48] and unsupervised 

[2, 9, 10, 11] induction algorithms to meet this goal.  However, since there is no 



 

  3

generally accepted theory for induction, we can only verify induced models by 

experiment. 

Much of the difficulty in inducing models revolves around vagueness within a 

set of observations [31].  In many real-world situations, we cannot precisely determine 

a concept because information is missing, noisy, or unequivocally wrong.  Usually, we 

make assumptions about our observations (such as common sense reasoning) to 

simplify the induction in these cases.  However, these assumptions may not be 

applicable in every case. 

Rough set theory appears to provide a sound theoretical basis for inductive 

reasoning [31].  It can express vagueness by employing a boundary region around a 

concept.  The size of the boundary region relative to that of the precise concept 

indicates the relative vagueness within a concept.  An empty boundary region for a 

concept implies a precisely defined concept, whereas a non-empty boundary region 

implies an imprecisely defined concept due to insufficient knowledge.  Zdzisław 

Pawlak, the pioneer of rough set theory, wrote the following about inductive reasoning 

and rough set theory: 

The creation of computers and their innovative applications essentially 
contributed to the rapid growth of interest in inductive reasoning.  This domain 
develops very dynamically thanks to computer science.  Machine learning, 
knowledge discovery, reasoning from data, expert systems and others are 
examples of new directions in inductive reasoning.  It seems that rough set 
theory is very well suited as a theoretical basis for inductive reasoning.  Basic 
concepts of this theory fit very well to represent and analyze knowledge 
acquired from examples, which can be next used as a starting point for 
generalization.  Besides, in fact rough set theory has been successfully applied 
in many domains to find patterns in data (data mining) and acquire knowledge 
from examples (learning from examples).  Thus, rough set theory seems to be 
another candidate as a mathematical foundation of inductive reasoning. [31] 
 



 

  4

Rough set theory provides researchers and data analysts with data mining 

techniques [13, 22] to characterize concepts using few assumptions.  In essence, it lets 

the data speak for itself.  Researchers have exploited rough set theory in applications 

such as attribute discretization [27], dimensionality reduction [39], knowledge 

discovery [16, 48], and time-series data analysis [15].  Because rough set theory 

demonstrates strong potential for induction, we choose it as the basis for our research.  

For more information about rough set theory, we recommend reading Section 3.1 in this 

thesis. 

 
1.2   Research Objective

 
We aim to advance induction for pattern classification using rough set theory as 

our basis.  We use the binary decision tree as our base model primarily for its simplicity 

and widely-understood properties.  Because we restrict ourselves to univariate node 

splitting, this model allows us to cast a decision at any node as a one-dimensional 

optimization problem [12]. 

 
1.3   Contributions

 
Our research contributes to the overall knowledge base for induction algorithms 

in pattern classification.  Specifically, our contributions are as follows: 

• We developed the Rough Product – a rough set based measure of 

information. 

• We developed a Rough Product based splitting criterion for binary decision 

tree construction. 



 

  5

• We developed the EvalTreeGUI software tool to empirically analyze the 

classification and structural metrics of the Gini Index, Twoing Rule, 

Maximum Deviance Reduction, and Rough Product splitting criteria. 

• We conducted experiments on artificial and real-world data to comparatively 

analyze the Gini Index, Twoing Rule, Maximum Deviance Reduction, and 

Rough Product splitting criteria. 

 
Conclusion 

 
In this chapter, we discussed induction for pattern recognition and some 

associated difficulties due to vagueness in observations.  We also stated our research 

objective and listed the contributions of this thesis. 



 

  6

 
 
 

CHAPTER TWO 
 

DECISION TREE OVERVIEW 
 
 

Synopsis 
 

In this chapter, we provide a general overview for decision trees.  Section 2.1 

describes the decision tree structure and introduces terminology that we will use 

throughout the thesis.  Section 2.2 discusses time complexity issues regarding the 

construction of optimal decision trees, and justifies the development of heuristics to 

create near-optimal decision trees.  Section 2.3 discusses decision tree classifier design, 

and examines data preprocessing, splitting criteria, stopping criteria, and pruning 

methods. 

 
2.1   Decision Tree Description and Terminology

 
A decision tree is a logical structure that is both descriptive and predictive, as 

shown in Figure 2.1.  These qualities come from the notion that we can visually inspect 

a tree structure and understand how it maps observations about a collection of objects to 

a target value.  A decision tree accepts as input an object described by a set of attributes 

and produces as output a single prediction.  Predictions can be either for classification 

(i.e., to choose a distinct category to which an input belongs) or for regression (i.e., to 

calculate a real value).  Our work deals exclusively with classification. 

We now define some basic terminology that we will use throughout the thesis.  

A tree is a directed acyclic graph that satisfies the following properties [37]: 



 

 
 
Figure 2.1: A Decision Tree Classifier. 
 

 

1. There is exactly one node, known as the root, which no branches (or edges) 

enter. 

2. Every node, except the root, has exactly one entering branch. 

3. There is a unique path (or sequence of branches) from the root to each node 

in the tree. 

If a branch exists from node A to node B, then we consider node A as a parent 

node and node B as a child node.  We consider nodes without children as leaf nodes or 

terminal nodes; all other nodes are internal nodes.  A binary tree is a special type of 

tree in which every node has either no children or exactly two children. 

A tree becomes a decision tree when each internal node is a conditional 

separator and each terminal node is a prediction.  A split is another term for a 

conditional separator at a node; it corresponds to split a collection of objects among a 

set of child nodes.  For example, the root node in Figure 2.1 splits the collection of fruit 

objects based on color.  A decision tree may contain univariate or multivariate splits.  

Univariate splits partition a collection of objects using a single attribute.  Multivariate 

  7



 

  8

splits partition a collection of objects using a combination of attributes.   Our work 

exclusively considers univariate splits. 

 
2.2   Decision Tree Time Complexity

 
While a problem may be computationally solvable in principle, it may not be 

solvable in practice due to an inordinate amount of time required to solve it.  To 

understand the time complexity of an arbitrary algorithm, we could measure the running 

time by determining the maximum number of steps used by the algorithm on any input 

of length n.  However, since expressions for the exact running time of an algorithm are 

often complicated, we usually estimate them through asymptotic analysis, which seeks 

to understand an algorithms’ running time on very large inputs. 

Within the framework of Time Complexity Theory, we define two primary 

classes of time complexity.  The class P contains decision problems that can be solved 

on a deterministic Turing machine that is polynomial in time with respect to the size of 

the input.  The class NP contains decision problems that can be verified as solved in 

polynomial time with respect to the size of a given input (or equivalently, only decided 

in polynomial time on a nondeterministic polynomial time Turing machine).  Note that 

the nondeterministic Turing machine does not correspond to any real-world computing 

device, but rather is a useful mathematical definition that characterizes problems in NP.  

Nondeterministic Turing machines are proven [41] to exhibit exponential time 

complexity on equivalent deterministic Turing machines. 

In general, polynomial differences in running time growth rates are considered 

small, whereas exponential differences are considered large.  For example, an input of 



 

size 1000 (i.e., n = 1000) in the polynomial time algorithm produces one million 

steps.  On the contrary, the same input in the exponential time algorithm  produces a 

humongous number virtually beyond comprehension.  This dramatic difference 

indicates that polynomial time algorithms (i.e., in class P) tend to be practically solvable 

on a computer, whereas exponential time algorithms (i.e., in class NP) tend to be 

practically unsolvable. 

2n

n2

Optimal decision tree construction (in the sense of minimizing the expected 

number of tests required to classify an unknown sample) has been proven to be in the 

class of NP-complete [17], which is a special class of problems in NP whose individual 

complexity is related to that of the entire NP class.  The importance of this result can be 

measured by the amount of work that has been put into finding efficient algorithms for 

optimal decision tree construction.  It is conjectured that no such efficient algorithms 

exist (on the belief that P ≠ NP) and therefore, there is motivation for finding efficient 

heuristics for constructing near-optimal decision trees [25, 32].   

 
2.3   Decision Tree Classifier Design

 
Classifiers constructed through an inductive learning process attempt to 

correctly map a data item (which is described by a collection of attributes) into one of 

several predefined classes.  The inductive learning process takes a set of data item 

samples and their corresponding class labels as input, and creates a classification model 

that predicts the class labels of unlabeled data items.  This section focuses on the design 

of a decision tree classifier and discusses some popular heuristics for preprocessing, 

node splitting, split stopping, and tree pruning.  We do not intend this section to be a 

  9



 

  10

survey of decision tree construction techniques; for such detailed information, we refer 

the reader to [26, 37].  In this section, we assume that raw data is available, and 

therefore do not discuss input sensing, segmentation, and feature extraction as it relates 

to a pattern recognition system. 

 
2.3.1   Data Preprocessing 
 

Typically, a raw data set contains unaltered or unprocessed samples from a 

population.  The most useful raw data accurately represents the population from which 

it came.  A combination of good statistical sampling and expert judgment can help to 

ensure that this is true. 

In the real world, raw data generally contains a certain degree of noise.  This 

could be due to a variety of reasons, such as missing data, incorrectly measured data, 

and/or outliers (samples not from the population in question).  As such, we often 

introduce preprocessing (i.e., “cleaning”) to minimize the effect of – or even completely 

remove – the noise in raw data.  This preprocessing phase may also transform our raw 

data into a more useful representation, such as an information system, as shown in 

Section 3.1.1.  While many preprocessing steps are application-specific, we briefly 

mention a few techniques that are problem-independent and may help to improve 

classifier performance.  More information on preprocessing may be found at [18]. 

 
2.3.1.1   Data Smoothing 

 
Data smoothing is sometimes useful when a numeric attribute has many distinct 

values, particularly if minor differences between values are insignificant and could 

possibly degrade classifier accuracy and performance.  We have various methods to 



 

  11

smooth values, which include averaging similar values, rounding values to the nearest 

whole number, or separating continuous value ranges into distinct classes. 

 
2.3.1.2   Automatic Data Replacement 

 
Automatic data replacement may be useful if the data is missing values.  

However, we should only use this technique if dropping incomplete samples is 

unfeasible.  Data may be automatically generated by replacing all missing values with a 

single global constant, their attribute mean, or their attribute mean for a given class.  

Unfortunately, these techniques bias our data.  To offset the bias, it may be possible to 

develop a predictive model that guesses the most likely value by using the most 

information in the data.  The main flaw with this approach, however, is that the 

predicted value is not the correct value.  Fortunately, many tree-growing algorithms 

account for missing values by assuming that samples with missing values are 

distributed probabilistically according to the relative frequency of known values. 

 
2.3.1.3   Automatic Outlier Detection 

 
Automatic outlier detection is useful for discovering samples that are 

inconsistent with the overall data.  These inconsistencies might be due measurement 

error, or perhaps may truly represent the data’s inherent variability.  In either case, 

when we discover an inconsistency, we must make a decision on how to handle it.  

Typically, we prefer to minimize its influences. 

There are several approaches to outlier detection.  The simplest approach 

assumes a particular distribution for an attribute and detects the samples that are beyond 

a defined distribution threshold.  Another approach, which we can apply to multiple 



 

numeric dimensions, uses distance calculations to detect samples that are farthest from 

the majority of samples.  A third (and more complex) approach defines basic 

characteristics about a data set and detects samples that deviate from them. 

 
2.3.2   Splitting Criteria 
 

The splitting criterion is the core for all tree-building algorithms.  The basic 

principle underlying these criterions is that of simplicity; that is, we prefer splitting on 

attributes that will ultimately lead to a simple, compact classifier [12].  Normally, the 

splitting criterion tries to make each child node as pure and relevant as possible.  

However, the vast major of splitting criterions are greedy heuristics performing 

successive local optimizations, which do not guarantee a global optimum.  There is also 

no guarantee that the terminating nodes will classify to a single decision class.  

Nevertheless, decision tree classifiers constructed in this manor have been used 

successfully in real world situations [7, 24, 37, 51]. 

The CART (Classification and Regression Tree) algorithm [7] typically uses the 

Gini Index criterion.  We can think of the Gini Index as a node’s expected error rate 

when a class is selected randomly from that node’s class distribution [12].  As an 

impurity measure, it reaches its minimum value (i.e., zero) when a node contains only 

one class.  It reaches its maximum value when the frequency for every class in a node is 

the same. 

Let function f be the frequency of class j at node N.  The Gini Index is calculated 

as follows: 

∑∑
≠

=−=
kjj

G kNfjNfjNfNI ),(),(),(1)( . 

  12



 

The Maximum Deviance Reduction splitting criterion is similar to the Gini 

Index, but is more commonly recognized as the Entropy function: 

∑−= ),(log),()( jNfjNfKNIE . 

This criterion is most frequently used in the ID3 [33], C4.5 [35], and C5.0 tree growing 

algorithms. It originates in information theory [38], where entropy is used to measure 

the disorder in a signal or random event.  Like in the Gini Index, the higher the entropy 

(or uncertainty), the more information is required to completely describe the data. 

The goal of the Gini Index and Maximum Deviance Reduction is to reduce the 

uncertainty until a pure leaf node is established.  Therefore, the best heuristics choose a 

split that most decreases the uncertainty.  For binary decision trees, this heuristic is 

defined as the change in information: 

)()1()()()( RLLL NIPNIPNINI −−−=Δ , 

where  and  are the left and right child nodes, and  is the fraction of samples 

in the parent node N that go to . 

LN RN LP

LN

The Twoing Rule splitting criterion has a much different splitting strategy than 

Gini Index or Maximum Deviance Reduction, and tends to be most useful in multi-class 

binary tree creation [12].  It chooses the split that best partitions groups of classes in a 

node.  The algorithm creates a candidate “super-group”  that consists of all samples 

in some subset of classes, and another candidate “super-group”  that consists of the 

remaining samples.  Then the algorithm searches for a split that best separates the two 

‘super groups’ by computing the change in information (as if it was a standard two-

class problem) and choosing the split that maximizes the change in information. 

1G

2G

  13



 

2.3.3   Stopping Criteria 
 

An important part of constructing a decision tree classifier is deciding when it is 

no longer useful to split a node.  Consider the case where we grow a tree to its lowest 

impurity; typically, such trees over fit the data and have poor generalization.  

Alternatively, consider the case where we prematurely stop tree growth; such trees 

under fit the data and typically have high error rates.  The stopping criterion detects 

when a node sufficiently describes a portion of the data and designates it as a 

terminating node. 

We cover several stopping criteria commonly used in decision tree construction.  

Traditional stopping criteria use validation sets or cross validation, as described in 

Section 4.1.1.  They test the decision tree during construction with validation sets and 

stop the algorithm when the validation set error is minimal.  Other methods use preset 

threshold values to stop a node split.  They may place thresholds on criteria such as the 

reduction in impurity, number of samples in a node, percentage of samples in a node, or 

tree depth.  A significant drawback with these methods is that it is usually difficult to 

know how to preset a threshold since a simple relationship between a threshold and 

classifier performance rarely exists.  The minimum description length (MDL) method 

[34] attempts to trade complexity for accuracy by splitting until it reaches a minimum in 

the global criterion function 

∑+⋅
nodes leaf

)(NIsizeα , 

where size is a measure of tree complexity, α  is some positive constant, and  is 

the impurity based on entropy.  The MDL criterion shows us that the larger the tree, the 

)(NI

  14



 

lower the terminal node entropy; its goal is to find an optimal balance between the tree 

size and terminal node entropy.  However, a drawback to implementing the MDL 

criterion is that a simple relationship between α  and classifier performance is difficult 

to find.  We may also use the statistical significance of the impurity reduction as a 

stopping criterion.  Essentially, we determine if an estimated distribution of IΔ  is 

statistically different from zero, for instance, by a chi-square test.  If the change is 

significant, we continue to split; otherwise, we stop splitting. 

 
2.3.4   Pruning Methods 
 

Pruning is an alternative to the stopping criterion.  Rather than stopping the node 

splitting during construction, we fully grow the tree to its maximum depth and then 

eliminate pairs of terminal nodes whose removal yields a satisfactory small increase in 

impurity.  As such, parent nodes of eliminated children become new terminal nodes.  

Other forms of pruning replace complex sub-trees with terminal nodes directly.  In 

addition, certain pruning methods employ cross validation, bootstrap, and MDL 

procedures.  Generally, we may prune with any stopping criteria used during node 

splitting – only in reverse.  [14] provides an excellent survey of various pruning 

methods and an empirical analysis of pruning on both predictive accuracy and size of 

induced decision trees. 

Pruning is generally preferred over stopping criteria because it does not suffer 

from a lack of sufficient look ahead, known as the horizon effect [12].  Furthermore, 

cross validation and bootstrapping require that we partition the data into training and 

  15



 

  16

testing sets.  With pruning, we simply use all the data and prune unnecessary terminal 

nodes. 

Conclusion 
 

This chapter provided a general overview for decision trees.  We described 

decision trees and introduced important terminology.  In addition, we discussed time 

complexity issues for optimal decision tree construction and justified the development 

of heuristics to create near-optimal decision trees.  We also discussed decision tree 

classifier design, examining data preprocessing, splitting criteria, stopping criteria, and 

pruning methods. 



 

  17

 
 
 

CHAPTER THREE 
 

ROUGH SET BASED DECISION TREE CONSTRUCTION 
 
 

Synopsis 
 

The purpose of our research is to formulate a measure of information based on 

rough set theory that we apply in a splitting criterion for a binary decision tree 

classifier.  In Section 3.1, we introduce the concepts of rough set theory and show how 

we characterize unknown decision boundaries by defining lower and upper 

approximations.  In Section 3.2, we examine past research related to rough set-based 

feature selection.  In Section 3.3, we derive and apply the rough product measure of 

information.  Section 3.3.1 mathematically develops the rough product information 

measure.  Section 3.3.2 performs a sample rough product calculation on a single 

conditional attribute and analyzes the results.  Section 3.3.3 presents an algorithm that 

applies the rough product in a splitting criterion for a binary decision tree classifier. 

 
3.1   Rough Set Theory

 
Zdzisław Pawlak first introduced rough set theory in 1982 as way to deal with 

vague or uncertain data [29].  It is an extension to classical set theory used to 

approximate definite and possible sets from empirical data.  Researchers have applied 

the theory in various branches of artificial intelligence, such as machine learning, expert 

systems, and pattern recognition [22].  The theory provides a means to reduce a data set, 

evaluate significant features in data, offer clear interpretations for results, and identify 



 

relationships normally not found using statistical methods [30].  In addition to rough set 

theory, this section introduces two important probabilistic measures used to analyze 

decision rules: the certainty factor and the coverage factor. 

 
3.1.1   Decision Tables 
 

We typically represent empirical data in a two-dimensional matrix as shown in 

Table 3.1.  The rows of the matrix represent individual sample objects and the columns 

represent sample attributes. 

Mathematically, we define the empirical data as an information function that 

consists of the cross product between all sample objects and all attributes, yielding an 

attribute value 

VAU →×:ρ , 

where U is the set of all objects, A is the set of all attributes, and V is the set of all 

attribute values.   

 

 

Table 3.1 

Empirical Data Example 

 1a  2a  3a  

1u  1v  3v  6v  

2u  1v  4v  7v  

3u  2v  5v  7v  

  18



 

For Table 3.1, , { }321 ,, uuuU = { }321 ,, aaaA = , and 

.  If we define{ 7654321 ,,,,,, vvvvvvvV = } ρ  as the information function for Table 3.1, 

then 111 ),( vau =ρ , 321 ),( vau =ρ , 631 ),( vau =ρ , and so on. 

To represent our empirical data as a decision table, we must partition the set of 

all attributes A into two mutually exclusive subsets: the subset of conditional attributes 

C and the subset of decision attributes D.  For this thesis, we assume that the decision 

attribute subset contains only one element designated for classification; however, in the 

general case, D may contain any number of elements. 

Generally, attribute values within a decision table can be either categorical or 

numeric.  To use rough set theory, however, we must ensure that attribute values within 

a decision table are represented categorically.  This normally requires us to bind the 

numeric attributes with defined numeric value ranges.  Values within the lower and 

upper bounds of a range become mapped to a distinct category defined for that range of 

values. 

 
3.1.2   Indiscernibility 
 

The indiscernibility concept is central to rough set theory.  Essentially, it is a 

binary equivalence relation for a pair of objects within a decision table.  Two objects 

are considered indiscernible if one cannot distinguish between the objects based on a 

given set of attributes.  If B is a non-empty subset of A, then the indiscernibility relation 

IND(B) is a relation on U defined for Uyx ∈,  such that )(),( BINDyx ∈  if and only if 

),(),( ayax ρρ =  for all . Ba ∈

  19



 

The indiscernibility relation can essentially partition U into equivalence classes, 

denoted by , which are collections of indiscernible objects.  For example, in 

Table 3.1, the partitions of equivalence classes with respect to A

)(/ BINDU

1 can be shown as 

{ } { }{ 3211 ,,)(/ uuuaINDU = }.  In this case, we see that  and  are indiscernible.  

However, if we consider , then  and  are not indiscernible 

because 

1u 2u

)(/ 21 aaINDU ∪ 1u 2u

{ } { } { }{ }32121 ,,)(/ uuuaaINDU =∪ . 

 
3.1.3   Rough Sets 
 

Using equivalence classes, we can form sets of objects that produce the same 

outcomes in the decision attributes.  However, objects contained within the same 

equivalence class will often have different outcomes.  We may handle this type of 

impreciseness with rough set theory through set approximations.  By evaluating the 

certainty of an outcome occurring within an equivalence class, we can classify subsets 

of objects into lower, upper, and boundary approximations.  

The lower approximation of a set with respect to the data set is the collection of 

objects whose equivalence classes are fully contained within the set of objects we want 

to approximate.  Therefore, if we want to approximate a concept given by a set of 

objects  using a subset of conditional attributes , then the lower 

approximation for R is 

UX ⊆ AR ⊆

{ }U XERINDUEXR ⊆∈=∗ |)(/)( . 

The upper approximation of a set with respect to the data set is the collection of 

objects whose equivalence classes are possibly contained within the set of objects we 

  20



 

want to approximate.  We note that the upper approximation always contains the lower 

approximation.  So again, if we want to approximate a concept given by a set of objects 

 using a subset of conditional attributes , then the upper approximation 

for R is 

UX ⊆ AR ⊆

{ }U ∅≠∩∈=∗ XERINDUEXR |)(/)( . 

The boundary approximation of a set with respect to the data set is the collection 

of objects whose equivalence classes cannot be classified as either contained or not 

contained within the set of objects we want to approximate.  This is equivalent to 

finding the set difference between the upper and lower approximations: 

)()()( XRXRXBNDR ∗
∗ −= . 

We can define a rough set using these approximations, as illustrated in  

Figure 3.1.  Simply, a set is rough if its boundary condition is not empty; otherwise, the 

set is definable based on R. 

The positive region of decision classes is a collection of objects in U that we can 

classify with complete certainty to  employing the attributes of C: )(/ DINDU

U )()( XRDPOSC ∗= . 

 
3.1.4   Decision Rules 
 

A decision rule is an implication statement in the form Ψ→Φ , where  are 

the conditions connected with the AND operator and 

Φ

Ψ  are the decisions connected 

with the OR operator.  We can directly convert rough sets into decision rules by relating  

  21



 

 

Figure 3.1: Visualization of a Rough Set.  Each box in the grid represents an 
equivalence class.  The dashed black line represents the boundary of the actual, but 
unknown set.  The lightly shaded boxes within the boundary line represent the lower 
approximation.  The heavily shaded boxes represent the boundary approximation – or 
rough set.  The union of the lightly shaded and heavily shaded boxes represents the 
upper approximation. 
 

 

the conditional attributes from its equivalence classes to its decisions.  Typically, before 

we transform rough sets into decision rules, we reduce the rough sets to remove 

superfluous data while completely preserving the consistency of the original data.  That 

is, is said to be a D-reduct when CR ⊆ )()( DPOSDPOS CR =  and there is no RR ⊂′  

such that .  Algorithms for data reduction are outside the scope 

of this section and thus are not covered.  However, to transform rough sets into decision 

rules, data reduction is not required, and in some cases not always possible in a 

reasonable time period due to an extremely large data set. 

)()( DPOSDPOS CR =′

  22



 

The probabilistic properties of certainty and coverage may be applied to these 

newly formed decision rules to extract previously unknown information. 

The certainty factor is defined as 

Φ
ΨΦ

=Φ | Ψ
 satisfying cases all ofnumber 

 and  satisfying cases ofnumber   )(P . 

The coverage factor is defined as 

Ψ
ΨΦ

=Ψ | Φ
 satisfying cases all ofnumber 

 and  satisfying cases ofnumber   )(P . 

We note that all conclusions drawn from the application of rough set theory on a 

data set are only true with respect to that data set.  We cannot assume that these 

conclusions are generalizations of the population from which the data set was collected, 

unless the data set is both sufficiently large and representative of the actual population. 

 
3.2   Past Research with Rough Set Based Feature Selection 

 
Here, we briefly survey several approaches to feature selection that have used 

rough set theory.  This section does not intend to serve as an exhaustive survey of all 

rough set-based approaches, but rather familiarize the reader with the type of work that 

done in this area.  The surveyed approaches include the PRESET algorithm, the ACRs 

algorithm, Significance Oriented Methods, and Support Heuristics. 

 
3.2.1   PRESET Algorithm 
 

The PRESET algorithm [23] is a heuristic feature selector that assumes a noise-

free binary domain and uses rough set theory to generate an optimal sequence of 

attributes for object classification.  This algorithm can construct a decision tree with a 

  23



 

  24

very specific property: that all nodes at a given tree depth are split using the same 

attribute.  However, PRESET is likely to fail on data whose attributes are highly 

correlated, since combinations of these attributes do not help in finding relevant splits 

[49]. 

 
3.2.2   ACRs Algorithm 
 

The ACRs algorithm [44] splits on a node by finding a single conditional 

attribute that minimizes the size of the rough set corresponding to this attribute.  It first 

calculates the lower approximation, upper approximation, negative region, and 

boundary region for all attributes in a data set.  Then, the algorithms chooses the 

attribute with the smallest boundary as the split that separates the samples in the node 

along all attribute values.  Because the split uses all attribute values at the node, the 

algorithm does not need to analyze the chosen attribute in deeper nodes, which 

improves the calculation speed.  If all samples inside a node belong to the same class, 

the node becomes a leaf; otherwise, the splitting continues.  Issues such as the treatment 

of a split when multiple attributes have the same minimum rough set size are discussed 

in [43]. 

 
3.2.3   Significance-Oriented Method 
 

The significance-oriented method [16] uses rough set theory to find the most 

significant conditional attribute for splitting.  The significance of an attribute is defined 

as the increase in dependency between conditional attributes and the decision attribute 

that results from the addition of a single attribute.  The method selects the attribute 



 

whose dependency increases the quickest.  The dependency between the conditional 

and decision attributes is defined as 

( )
)(

)(
),(

Ucard
DPOScard

DRg R= . 

The significance of an attribute a is defined as 

),(),()( DRgDaRgaSIG −+=  

where R is the set of currently selected features and D is the decision attribute. 

 
3.2.4   Support-Based Heuristics 
 

The maximum support heuristic [46, 47] was developed to address a 

shortcoming of the significance oriented method.  The significance-oriented method 

only considers the dependency of an additional feature, but fails to consider the number 

of instances covered by the rules generated due to the additional feature.  This 

additional information is known as the “support” of the rule. 

The purpose of the maximum support heuristic is to search for the most 

significant rule with the largest support.  Rules with high significance but low support 

are inherently not useful for classification.  For example, in an extreme case, a feature 

with a unique value for each sample in a data set can trivially be used to generate rules 

for classification of any other feature in that data set.  This feature certainly has very 

high dependency.  However, these rules would highly over fit the data because the 

maximum number of instances for each rule is one. 

The maximum support heuristic is defined as: 

{ }( ) { } { }( ))(/)()(),( aRINDDPOSMAXSizeDPOScardaRF aRaR +×= ++ . 

  25



 

The first factor indicates the size of the consistent instances.  The second factor 

denotes the maximum size from the indiscernibility classes included in the positive 

region (i.e., the support). 

The maximum support heuristic is limited because it selects the attributes that 

produce only a single rule with high significance and support [46].  Consequently, other 

forms of the support heuristic were developed.  The average support heuristic, for 

example, was created to take into account the overall quality of the most significant 

rules generated by an additional attribute.  The overall quality of the n most significant 

rules is: 

∑
=

=
n

i
idaRS

n
aRQ

1
),,(1),(  

where { } { }( ))(/)(),,( aRINDdDPOSMAXSizedaRS iaRi +== +  is the support of the 

most significant rule for decision class { }idD = .  The domain of D is . { }nddd ,...,, 21

Thus, the average support heuristic is the product between the size of the 

consistent instances and the overall quality. 

{ }( ) ),()(),( aRQDPOScardaRF aR ×= +  

The average support heuristic was further expanded to the parameterized 

average support heuristic (PASH) [45, 46], which relaxes the traditional notion of the 

lower approximation for a rough set.  In PASH, the lower approximation is allowed to 

hold a certain degree of impurity to better model data that has inconsistent instances.  

This extension of the lower approximation is based on the prior probabilities of the 

  26



 

decision classes.  If the prior probabilities are known, then the lower approximation is 

defined as: 

U
⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥>=

∧
⎭
⎬
⎫

⎩
⎨
⎧

≤≤
=

=
=

=

=

∈

==∗

)5.0()|(

1,
)(

)|(
)(

)|(

|)(/

)(

ttEdDP

nk
dDP

EdDP
MAX

dDP
EdDP

RINDUE

dDR

ji

k

ji

i

ji

j

i  

If the prior probabilities are unknown, then we assume each value of a decision 

attribute has equal prior probability.  In this case, the lower approximation is defined as: 

{ }U )5.0()|(|)(/)( ≥>=∈==∗ ttEdDPRINDUEdDR jiji  

The advantage of PASH is that it considers the overall quality of the rules while 

including predictive rules that are ignored using traditional rough set theory. 

 
3.3   The Rough Product 

 
The average support heuristic demonstrates that we can remove all noise in the 

data set by taking into account the average support of the most significant rules for 

every decision class.  Essentially, this heuristic only determines the most significant 

rules found in the lower approximation.  PASH improves the accuracy of the average 

support heuristic by assuming that measured data will always have a certain degree of 

noise.  It includes certain rules that most likely describe the lower approximation 

according to a predefined probability threshold.  However, by including these additional 

rules, PASH increases the overall complexity of the rule-based classifier. 

Generally, the best classifiers optimally balance two key metrics: accuracy and 

complexity.  These metrics are directly affected by the amount of noise tolerated during 

  27



 

training.  The research described in Section 3.2 shows that rough set theory could be 

used to discriminate between pure and impure data by using lower and upper 

approximations.  Therefore, our research effort focuses on two parts: 

1. The creation of a new measure of information based on rough set theory. 

2. The development of a splitting criterion for a binary decision tree classifier 

using our new measure of information. 

 
3.3.1   Derivation of the Rough Product
 

Let us define an information function such that 

VAU →×:ρ , 

where U is the set of all objects, A is the set of all attributes, and V is the set of all 

attribute values.  We then partition the attributes A into two subsets C and D, 

respectively known as the condition and decision attributes.  Next, we define the set of 

values for an attribute : Aa ∈

• For the categorical case, . { }),(:| axvUxvV a ρ∈∈∀=

• For the numeric, non-categorical case with a split threshold λ , 

. ( ){ }λρλ <=ℜ∈∧∈∀∧∈= ),(:},{| axvUxfalsetruevvV a

Using , we define the set of unique values for an attribute  such that aV Aa ∈

{ })(| aaa VVvvUV ∩∈= . 

We define a sequence as a mapping of natural numbers in 1Ν  (set of positive 

whole numbers greater than or equal to 1) to elements in a set.  If we let X be an 

arbitrary set, then a sequence of X is defined as: 

  28



 

{ })(,...,2,1 dom|: 1 XcardfXfX
def

=→Ν= . 

Using the sequence of unique values for an attribute aUV , we construct an 

indiscernibility matrix between the values of attribute Cc ∈ and the values of attribute 

D.  The arrangement of the matrix is critical for subsequent calculations.  If we let 

 and , we can define the dependency matrix )( cUVcardm = )( DUVcardn = cM as: 

⎪
⎪
⎭

⎪⎪
⎬

⎫

⎪
⎪
⎩

⎪⎪
⎨

⎧

==

∈∧∈∈∀∧∈

∪∈

=

njmi

UVDxjUVcxipxCc

DcINDUp

M Dcc
ij

,...2,1 and ,...2,1for 

,)),(,()),(,(:

|)(/

ρρ . 

At this point, we no longer need to work with a matrix of sets, since each object 

in each set is indiscernible to the other objects in the same set.  As such, we can 

collapse each set in cM  to a single number representing its cardinality and form a new 

matrix cK : 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

==

∈∧∈
=

njmi

MkCckcard
K

c
ijc

ij
,...2,1 and ,...2,1for 

,|)(
. 

From cK , we determine the following results: 

• The total number of objects with the same value in  cUV

∑
=

=
n

j

c
ij

c
i KCO

1
 for i = 1, 2, …, m. 

• The total number of objects with the same value in  DUV

  29



 

  30

i

c
ijj KDO

1
 for j = 1, 2, …, n. 

• The total number of all objects 

i j
ij

1 1

• The certainty factor for each indiscernible conditional value and decision value 

pair 

∑
=

=
m

c

∑ ∑=
m n

cc KTO . 
= =

c
i

c
ijc K

CERT =  for i = 1, 2, …, m; j = 1, 2, …, n. ij
CO

• The coverage factor for each indiscernible conditional value and decision value 

pair 

c
j

c
ijc K

COV =  for i = 1, 2, …, m; j = 1, 2, …, n. ij
DO

• The certainty factor for each decision value independent of any conditional 

value 

c

c

TO
DO

which the upper approximation for each decision value in UV  changes when the set

of objects is partitioned by a conditional value in UV

jD
jCERT =  for j = 1, 2, …, n. 

One of the goals of our measure of information is to understand the manner in 

 

.  We do this by taking the 

difference between the certainty depende endent of 

any conditional value.  We call this the rough gain: 

D

c

ncy matrix and the certainty indep



 

  31

examine the rough gain to determine the preferred partition relative to the available 

gain for only an extremely small proportion of objects.  Therefore, we must also 

rough set based measure of informatio  follows: 

, n 

s 

h an attribute value partition affects the 

upper approximation for each decision class.   

D
j

c
ij

c
ij CERTCERTRG −=  for i = 1, 2, …, m; j = 1, 2, …, n. 

A positive rough gain indicates an improvement in the upper approximation, 

whereas a negative rough gain indicates its degradation.  However, we cannot solely 

objects because we could produce a partition with an extremely high positive rough 

examine the proportion of objects affected by the partition – in other words, the 

coverage of the condition and decision value dependency.  Thus, we can define the 

n, termed as the rough product, as

c
ij

c
ij

c
ij COVRGRP ×=  for i = 1, 2, …, m; j = 1, 2, …

As in the rough gain matrix, positive and negative values in cRP  indicate an 

improvement or degradation in the upper approximation, respectively.  However, by 

incorporating the coverage factors, the rough gain is scaled appropriately to reflect the 

support for each decision class.  The highest positive values in cRP  for all c indicate

attribute value partitions that produce the strongest increase in certainty with a high 

degree of support for the associated decision classes.  Positive and negative values near 

zero indicate attribute value partitions that produce minimal effects on the associated 

decision classes, possibly suggesting noise.  Values at zero indicate an attribute value 

partition that produces no effect on the associated decision classes.  By using the rough 

product, we can understand the manner in whic



 

3.3.2   Example Rough Product Calculation 
 

In this Section, we demonstrate a calculation for the rough product matrix.  Our 

example uses Table 3.2 as an information function ),( axρ  to calculate the rough 

product matrix for the  attribute. 1c

First, let us define the set of all objects U, the set of all attributes A, and the set 

of all attribute values V for Table 3.2. 

{ }7654321 ,,,,,, xxxxxxxU =  

{ }DccA ,, 21=  

{ }321 ,,,,, dddcbaV =  

Next, we define the set of unique attribute values for attributes  and . 1c D

{ }cbaUV c ,,1 =  

{ }321 ,, dddUV D =  

Now, we construct an indiscernibility matrix 1cM  between the values in  

and  as shown in Table 3.3. 

1cUV

DUV

Using 1cM , we construct the 1cK  matrix as follows: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

101
210
020

1cK  

 

 

 

  32



 

Table 3.2 

Demonstration Decision Table 

 
 1c  2c  D  

1x  a c  2d  
 
2x  
 

a  c  2d  

3x  
 

c  a  3d  

4x  
 

c c  1d  

5x  
 

b  a  3d  

6x  
 

b  b  3d  

7x  
 

b  c  2d  

 

 

Table 3.3 

Indiscerniblity Matrix for Attribute  1c

  33

   
1d  2d  

 

 
3d  
  

 
a  
 

 
∅  

 
{ }21, xx  

 
∅  

b  
 

∅  { }7x  { }65 , xx  

c  
 

{ }4x  ∅  { }3x  

 

 



 

From 1cK , we determine the following results: 

[ ]Τ= 2321cCO  

[ ]3311 =cDO  

71 =cTO  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

5.00.05.0
66.033.00.0
0.00.10.0

1cCERT  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
33.00.00.1
66.033.00.0
0.066.00.0

1cCOV  

[ ]43.043.014.0=DCERT  

Then, we calculate the rough gain and rough product as follows: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−

−−
=

07.043.036.0
23.01.014.0
43.057.014.0

1cRG  

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

0231.00.036.0
1518.0033.00.0

0.03762.00.0
1cRP  

By analyzing the rough product, we gain the following insight about the 

possible splits in the  attribute: 1c

• If we choose to split on value a , decision class  yields to its lower 

approximation with relatively high relevance.  We know this by noting the fairly 

high value in  and zeros in  and . 

2d

1
2,1

cM 1
1,1

cM 1
3,1

cM

  34



 

• If we choose to split on value b , the upper approximation for decision class  

will improve with some relative relevance.  However, this improvement carries 

over a small amount of noise in class . 

3d

2d

• If we choose to split on value c , the upper approximation for decision class  

will significantly improve.  However, this improvement also carries over a small 

amount of noise. 

1d

 
3.3.3   Rough Product Splitting Criterion for the Binary Decision Tree 
 

This section documents an application of the rough product measure of 

information.  We use the rough product in a splitting criterion for the binary decision 

tree model. 

The general goal of any binary decision tree splitting criterion is to find not only 

the best feature upon which to split, but also the best value.  In our splitting criterion, 

we define the “best” split as that which maximizes the sum of the maximum rough 

product in the left and right node, such that the decision classes for the maximum rough 

products in each node are not the same.  In other words, we choose the split that best 

improves the upper approximation in each child node for two different classes. 

We now describe the rough product splitting algorithm using pseudo-code.  The 

input is the training data with designations for those attributes that have unordered 

categorical conditional values, ordered numeric conditional values, and unordered 

categorical decision values.  Additionally, we set the splitmin for the tree, which is a 

number n such that impure nodes must have n or more objects to be split.  The 

algorithm outputs a data structure that describes the decision tree.  Since this algorithm 

  35



 

produces a classifier, at least one attribute in the data set must be categorical.  For 

brevity, we do not include initialization and resolution pseudo-code; we only focus on 

the node-splitting portion of the algorithm. 

Rough Product Splitting Algorithm 

 
WHILE there are nodes available for splitting 
 

IF Node is impure with an object count >= splitmin THEN 
 

FOR each conditional attribute c 
 

IF c cannot be split THEN 
 

CONTINUE to next available attribute. 
 
ENDIF 
 
COMPUTE rough product RP_L for all left node splits. 
 
COMPUTE rough product RP_R for all right node splits. 
 
FOR each split s 
 

STORE the sum of the maximum rough products in RP_L 
and RP_R for split s, such that the decision classes 
associated with the maximum rough products in RP_L 
and RP_R for split s are not the same. 

 
ENDFOR 
 
STORE the maximum rough product sum for attribute c. 
 
STORE split associated with maximum rough product sum 
for attribute c. 
 

ENDFOR 
 
IF Node can be split THEN 
 

Split Node using the attribute and attribute value with 
the overall maximum rough product sum. 

 
ENDIF 
 

ENDIF 
 
ENDWHILE 

 

  36



 

  37

Conclusion 
 

In this chapter, we developed a measure of information based on rough set 

theory.  We defined the rough product for an attribute value partition as the product of 

the certainty factor gain and coverage factor.  Using this measure, we analyzed the 

effect on each decision class caused by an attribute value split.  The highest positive 

values in a rough product matrix indicate a strong increase in certainty with a high 

degree of support in the associated decision classes.  Positive and negative values near 

zero indicate minimal effects on associated decision classes, which, in some cases, 

could be noise.  Values at zero indicate a split that has no effect on associated decision 

classes. 

We then applied the rough product measure of information in a splitting 

criterion for a binary decision tree.  The splitting criterion prefers the split that 

maximizes the sum of the maximum rough product in the left and right node, such that 

the decision classes for the maximum rough products in each node are not the same.  

Other splitting criterions based on the rough product may be possible.  In addition, it 

may be possible to apply the rough product in information-based algorithms. 



 

  38

 
 
 

CHAPTER FOUR 
 

SPLITTING CRITERION ANALYSIS THROUGH CROSS VALIDATION 

 
Synopsis 

 
Our goal in this chapter is to comprehensively evaluate the Rough Product 

splitting criterion by comparing its behavior to that of other similar splitting criteria.  In 

Section 4.1, we describe our approach for evaluating the Rough Product splitting 

criterion.  Section 4.1.1 explains our use of the k-folds cross validation method.  Section 

4.1.2 describes the metrics for measuring splitting criterion performance.  Section 4.1.3 

states the competing splitting criteria that we compare against the Rough Product 

splitting criterion.  Section 4.1.4 describes the EvalTreeGUI software tool that we use to 

perform splitting criterion evaluations.  In Section 4.2, we evaluate the Rough Product 

splitting criterion using various data sets.  Section 4.2.1 discusses the performance of 

this criterion on artificially generated Gaussian distributed clusters.  Section 4.2.2 

discusses the performance of this criterion on real-world data. 

 
4.1   Splitting Criterion Comparison Approach 

 
According to [12], there are no context-independent or usage-independent 

reasons to favor one classification method over another.  When one algorithm 

outperforms another, this occurrence is most likely a consequence of the algorithms’ fit 

to a particular pattern recognition problem.  That said, we still wish to draw general 

conclusions about the behavior of the Rough Product splitting criterion given arbitrary 



 

  39

data sets for classification.  Thus, our purpose is two-fold: first, we must determine 

whether our splitting criterion is useful in classification; second, we must compare our 

resulting decision tree classifiers to other similar classifiers using various classification 

and structural metrics. 

 
4.1.1   Methodology 
 

Our analysis employs the k-folds cross validation technique.  This technique 

takes an arbitrary data set and randomly divides its samples into k equally-sized disjoint 

subsets.  A classifier is then trained k times, each time with a different subset held out 

for testing.  The results from each testing subset are then combined – typically, by 

averaging – to estimate a classifier’s performance.  Estimation variances usually 

decrease as the value of k increases; however, k values equal to five or ten are generally 

considered reasonable.  More information about cross validation for accuracy 

estimation and model selection is found in [21]. 

Because the k-folds cross validation technique is a heuristic, generalizations 

about a classifier’s performance cannot be made without assumptions about the 

classifier or problem [12].  In our case, because each tested classifier is a binary 

decision tree, we assume performance differences are only due to splitting criteria.  In 

addition, we implicitly make our assumptions about each evaluation data set without 

explicitly stating its prior information, distribution, and training data size. 

 
4.1.2   Metrics 
 

We determine classification metrics by comparing the classifier output to the 

true output for a given input.  However, this comparison is not as simple as determining 



 

  40

whether the classifier output matches the true output.  When a classifier predicts that a 

particular output class is true, it also predicts that all remaining output classes are false.  

Therefore, we must analyze all possible output classes to evaluate a prediction.  For a 

given prediction and truth-value, each possible output class is designated as one of the 

following: 

• A class is true positive when the classifier output correctly predicts that the 

class is equal to the true output. 

• A class is true negative when the classifier output correctly predicts that the 

class is not equal to the true output. 

• A class is false positive when the classifier output incorrectly predicts that a 

class is equal to the true output. 

• A class is false negative when the classifier output incorrectly predicts that a 

class is not equal to the true output. 

We illustrate the previous metrics with two cases shown in Table 4.1: (1) when 

the true output is equal to the classifier output and (2) when the true output is not equal 

the classifier output.  We assume the set of output classes is {A, B, C}. 

 

 

Table 4.1 

Two Cases for Classifier Output Comparison 

Situation True Output Classifier Output 
Case 1 A A 
Case 2 A B 

 



 

  41

In Case 1 (see Table 4.2), the classifier correctly predicts that the true output is 

class A.  Thus, class A is true positive.  The classifier also correctly predicts that the true 

output is neither class B nor C.  Therefore, classes B and C are true negative. 

In Case 2 (see Table 4.3), the classifier incorrectly predicts that the true output is 

class B, generating a false positive.  The classifier should have predicted that class A is 

the true output.  Since it did not, class A is false negative.  Despite incorrectly 

predicting the true output, the classifier output still correctly predicts that class C is not 

the true output.  Therefore, class C is true negative. 

If we determine the total number of the true positives, true negatives, false 

positives, and false negatives for all test cases, then we can use a variety of performance 

metrics to analyze both the predictive performance of each output class and the 

predictive performance of the classifier as a whole.  The following lists the 

classification performance metrics we use in our analysis: 

 

 

Table 4.2 

Attribute Value Designation for Case 1 

Class Value True Positive True Negative False Positive False Negative 

A Yes No No No 

B No Yes No No 

C No Yes No No 

 



 

Table 4.3 

Attribute Value Designation for Case 2 

Class Value True Positive True Negative False Positive False Negative 

A No No No Yes 

B No No Yes No 

C No Yes No No 

 

 

• Accuracy: the proportion of correct classifier predictions over all classifier 

predictions. 

FNFPTNTP
TNTPA

+++
+

=  

• Error Rate: the proportion of incorrect classifier predictions over all 

classifier predictions. 

FNFPTNTP
FNFPAER

+++
+

=−= 1  

• Precision: the proportion of correctly predicted class outputs over all 

predicted class output cases. 

FPTP
TPP
+

=  

• Recall: the proportion of correctly predicted class outputs over all true class 

output cases. 

FNTP
TPR
+

=  

  42



 

• F-Measure: the weighted harmonic mean of the precision and recall.  When 

, the precision and recall are weighted evenly. By adjusting the value 

of , we adjust our preference toward either the precision or recall metric.  

For example,  weights the precision twice as much as the recall, 

whereas  weights the recall twice as much as the precision.  For our 

analysis, we use . 

1=n

n

5.0F

2F

1F

RPn
RPnFn

+×

×+
=

)(
)1(

2

2
 

In addition to the classification performance metrics, we also measure decision 

tree structural metrics.  The structural metrics we use include: 

• Node Count: the total number of nodes in a decision tree. 

• Tree Depth: the number of branches taken to traverse a tree from its root to 

every leaf. 

• Classification Complexity: the number of branches taken to traverse a tree 

from its root to the leaf used for classification, independent of classification 

correctness. 

 
4.1.3   Competing Splitting Criteria 
 

We compare the Rough Product splitting criterion to three popular splitting 

criteria used to construct decision trees: the Gini Index, Maximum Deviance Reduction 

(MDR), and Twoing Rule.  Section 2.2.2 contains detailed information about each 

competing splitting criterion. 

 

  43



 

  44

4.1.4   Tree Evaluation Graphical User Interface 
 

In this section, we describe our EvalTreeGUI software tool, as shown in  

Figure 4.1.  We use it to evaluate binary decision trees across various metrics.  It uses 

MATLAB® to perform k-folds cross validation over a range of splitmins for any 

selected tree construction option.  When the evaluation is complete, we use an advanced 

integrated plotting system to easily analyze the results. 

 
4.1.4.1   File Menu 

 
The File menu is the conduit for transferring data into and out of the 

EvalTreeGUI program.  The Open command loads data from a properly formatted 

Excel spreadsheet, automatically determining categorical and numerical attributes.  The 

program aborts loading if a categorical attribute is not detected.  The Load and Save 

commands allow the user to restore and remember the current program state, 

respectively.  These commands prove useful when evaluating enormous data sets.  For 

convenience, the program state is stored to a MAT-file.  The Print command sends an 

image of the EvalTreeGUI dialog to a specified printer, and the Close command exits 

the EvalTreeGUI program. 

 
4.1.4.2   Status Panel 

 
The Status panel communicates real time information about the EvalTreeGUI 

program status to the user, such as: success, error, and instructional messages; file load 

statistics (number of samples, number of features); and tree evaluation status (splitmin 

number, fold number, and percent complete). 



 

 

 

 

 

 
 
 

Figure 4.1: Screenshot of the EvalTreeGUI software.  This application provides the 
mechanisms to load Excel data sets, evaluate decision tree classifiers across various 
metrics with k-folds cross validation, and analyze results with an integrated plotting 
system.  (This figure is presented in color; the black and white reproduction may not be 
an accurate representation.) 

  45



 

4.1.4.3   Settings Panel 
 

The Settings panel allows the user to set various parameters for the tree 

evaluation process.  By clicking the Evaluate button, the program begins the cross 

validation process according to the set parameters, providing real time status updates in 

the Status panel. 

The Decision Variable pop-up menu lists all categorical attributes in the loaded 

data.  The user may choose any one of these categorical attributes for classification.  By 

default, the program selects the first available categorical attribute. 

The Folds pop-up menu lists the k values, ranging from two to ten, that can be 

set for the k-folds cross validation process.  By default, the program selects “5.” 

The SplitMin sub-panel contains three textboxes that set the range and step 

interval of the splitmin parameter.  The Lower and Upper textboxes define the splitmin 

lower and upper bound, respectively.  The Step textbox defines the splitmin step 

interval.  The program only accepts whole numbers greater than one in each field, and 

the value in Lower cannot be greater than that in Upper.  The program automatically 

presets the textbox fields to the following values as the Open command executes: 

1=Lower  

⎥⎥
⎤

⎢⎢
⎡ −×

=
Folds

FoldsNumSamplesUpper )1(  

⎡ ⎤1.0×= UpperStep  

The Tree Construction Options sub-panel allows the user to select the splitting 

criteria to evaluate with the loaded data set.  In addition, this sub-panel provides an 

  46



 

  47

option to shuffle the data object order.  An unselected shuffle option ensures that the 

currently loaded data object order will not change during an evaluation. 

 
4.1.4.4   Plot Controls Panel 

 
The Plot Controls panel allows the user to analyze the results of the tree 

evaluation in a variety of ways 

The Show Tree sub-panel consists of a SplitMin pop-up menu, Fold pop-up 

menu, Show button, and Close button.  By clicking the “Show” button, the 

EvalTreeGUI program calls the MATLAB® tree viewer (see Figure 4.2) to graphically 

display the tree structure for a given splitting criterion at a set SplitMin and Fold.  The 

“Close” button closes all external MATLAB® windows. 

By clicking the “Make Plot” button, the program generates a plot according to 

the set parameters in the Metric pop-up menu, Metric Operation pop-up menu, Fold 

Operation pop-up menu, and Tree Display Options panel. 

The Metric pop-up menu allows the user to choose a classification or structural 

metric for analysis.  We define these metrics in Section 4.1.2. 

The Metric Operation pop-up menu allows the user to apply a statistical 

operation for a selected Metric.  This choice combines the results of each decision value 

with standard statistical functions, such as mean, median, minimum, and maximum.  

For classification metrics, the user may also choose to analyze a particular decision 

value individually with respect to the selected Metric.  For example, for a classifier that 

predicts benign and malignant tumors, the user may want to analyze the F-Measure for  

 



 

 

 

 

 

Figure 4.2:  Screenshot of the Classification Tree Viewer.  This program (treedisp.m) 
belongs to the MATLAB® Statistical Toolbox.  It graphically displays a binary 
decision tree.  Each internal node is labeled with its decision rule and each terminal 
node is labeled with the predicted value.  (This figure is presented in color; the black 
and white reproduction may not be an accurate representation.) 

  48



 

  49

only malignant predictions since incorrect malignant predictions would undoubtedly 

cause more tragedy for a patient. 

The Fold Operation pop-up menu allows the user to apply a statistical operation 

to the selected Metric results from each fold.  Like the Metric Operation, this choice 

combines the selected results with standard statistical functions, such as mean, median, 

minimum, and maximum.  The user may also choose to analyze the selected results for 

an individual fold. 

The Tree Display Options sub-panel allows the user to choose splitting criteria 

to analyze.  These choices affect both the plot and tree viewer.  In addition, the sub-

panel provides an External Output radio button, which when selected, display the plot 

results in an independent figure window (see Figure 4.3).  This feature is often useful 

when the user requires more tools to analyze the plot results or a printer-friendly 

version of plot for publication. 

 
4.1.4.5   Summary Panel 

 
The Summary Panel provides a global analysis of the points graphed in the plot.  

The user may choose to combine the plot points with standard statistical functions, such 

as mean, median, minimum, and maximum. 

 
4.2   Experiments 

 
We now present two sets of experiments to evaluate the Gini Index, Maximum 

Deviance Reduction (MDR), Twoing Rule, and Rough Product splitting criteria.  We 

use the first set to characterize each criterion in response to various degrees of  

 



 

 

 

 

 

 

Figure 4.3: External Output Plot.  To provide more flexibility and power during 
analysis, the user may configure the EvalTreeGUI software to automatically generate a 
plot in an independent MATLAB® figure window.  Various tools within the figure 
window are available to assist in plot analysis.  (This figure is presented in color; the 
black and white reproduction may not be an accurate representation.) 

  50



 

controlled noise.  We use the second set to evaluate each splitting criterion on real-

world data.  The appendix contains tables that summarize the results for these 

experiments. 

 
4.2.1   Gaussian Distribution Cluster Data Sets 

 
In this set of experiments, we characterize the behavior of each splitting 

criterion in response to data containing various degrees of noise.  These data sets are 

artificially generated three-dimensional points formed within Gaussian distributions: 

( )),(),,(),,(),,( σμσμσμ NNNZYX ≈ . 

We classify each point according to the distribution it came from.  We give all 

classifiers the same training and testing sets without biases or cost functions.  In 

addition, we perform all evaluations with a 10-folds cross validation across a range of 

splitmins. 

 
4.2.1.1   Gaussian Experiment 1 – Perfectly Separable Case 

 
In this experiment, we form two distinct noiseless classes that each contains 150 

points, as shown in Figure 4.4(a).  The points in the blue distribution come from N(5,1), 

and those in the red come from N(10,1).  We aim to provide a baseline set of 

measurements and ensure that the splitting criteria can easily separate the classes. 

As expected, each splitting criterion produced decision trees with the same 

structure, as shown in Figure 4.4(b, c, d, e, f, g, h, i).  However, the choice of the 

splitting attribute value produced minor variances in the classification metrics.  For 

real-valued attributes A, the Gini Index, Twoing Rule, and MDR implementations 

  51



 

 

(a) 

Figure 4.4: Gaussian Experiment 1.  The data set (a) is constructed such that 150 blue 
three-dimensional points come from N(5,1) and 150 red three-dimensional points come 
from N(10,1).  Provided are the fold mean results for the mean accuracy (b), mean error 
rate (c), mean precision (d), mean recall (e), mean F-measure (f), mean node count (g), 
mean tree depth (h), and mean complexity (i) for the Gini Index (blue crosses), Twoing 
Rule (green square), Maximum Deviance Reduction (magenta circles) and Rough 
Product (red ‘x’s) splitting criteria.  (This figure is presented in color; the black and 
white reproduction may not be an accurate representation.) 

  52



 

Figure 4.4 – Continued 

 

 

 

 

 

(b) 

  53



 

Figure 4.4 – Continued 

 

 

 

 

 

(c) 

  54



 

Figure 4.4 – Continued 

 

 

 

 

 

(d) 

  55



 

Figure 4.4 – Continued 

 

 

 

 

 

(e) 

  56



 

Figure 4.4 – Continued 

 

 

 

 

 

(f) 

  57



 

Figure 4.4 – Continued 

 

 

 

 

 

(g) 

  58



 

Figure 4.4 – Continued 

 

 

 

 

 

(h) 

  59



 

Figure 4.4 – Continued 

 

 

 

 

 

(i) 

  60



 

calculate the split value s as the midpoint of usl AAA <<  that leads to the same 

maximum impurity reduction.  The Rough Product implementation, on the other hand, 

arbitrarily chooses either ls AA =  or us AA = .  Theoretically, we have little reason to 

favor one split selection method over another, but the Rough Product implementation is 

slightly simpler. 

 
4.2.1.2   Gaussian Experiment 2a – Slightly Noisy Case with Low Density 

 
In this experiment, we position the Gaussian distribution clusters closer to each 

other, such that they slightly overlap.  The blue distribution contains 150 points that 

belong to N(5,1), whereas the red distribution contains 150 points that belong to N(8,1), 

as shown in Figure 4.5(a).  By introducing noise between the classes, we naturally 

expect the classification metric results to decrease relative to the baseline, and the 

structural metric results to increase relative to the baseline.  We aim to determine how 

drastic these changes are. 

The results for the classification metrics, shown in Figure 4.5(b, c, d, e, f), 

illustrate that, despite some variance, all splitting criteria perform similarly, and with a 

very high classification accuracy.  Compared to the baseline experiment, we see only a 

small reduction in classification accuracy, confirming that the splitting criteria can 

easily separate the classes despite the noise.  Structurally, the Gini Index, Twoing Rule, 

and Rough Product splitting criteria produce nearly equivalent decision trees, with 

differences caused only by their split value selection methods.  However, the MDR 

splitting criterion generates completely different trees with a noticeably lower mean 

node count, depth, and complexity, as shown in Figure 4.5(g, h, i). 

  61



 

 

 

(a) 

Figure 4.5: Gaussian Experiment 2a. The data set (a) is constructed such that 150 blue 
three-dimensional points come from N(5,1) and 150 red three-dimensional points come 
from N(8,1).  Provided are the fold mean results for the mean accuracy (b), mean error 
rate (c), mean precision (d), mean recall (e), mean F-measure (f), mean node count (g), 
mean tree depth (h), and mean complexity (i) for the Gini Index (blue crosses), Twoing 
Rule (green square), Maximum Deviance Reduction (magenta circles) and Rough 
Product (red ‘x’s) splitting criteria.  (This figure is presented in color; the black and 
white reproduction may not be an accurate representation.) 

  62



 

Figure 4.5 – Continued 

 

 

 

 

 

(b) 

  63



 

Figure 4.5 – Continued 

 

 

 

 

 

(c) 

  64



 

Figure 4.5 – Continued 

 

 

 

 

 

(d) 

  65



 

Figure 4.5 – Continued 

 

 

 

 

 

(e) 

  66



 

Figure 4.5 – Continued 

 

 

 

 

 

(f) 

  67



 

Figure 4.5 – Continued 

 

 

 

 

 

(g) 

  68



 

Figure 4.5 – Continued 

 

 

 

 

 

(h) 

  69



 

Figure 4.5 – Continued 

 

 

 

 

 

(i) 

  70



 

  71

4.2.1.3   Gaussian Experiment 2b – Slightly Noisy Case with High Density 
 

As in Gaussian Experiment 2a, the Gaussian distributions slightly overlap.  

However, we increase the density of each distribution by an order of magnitude, such 

that each decision class contains 1500 data points.  The blue distribution contains points 

that belong to N(5,1), and the red distribution contains points that belong to N(8,1), as 

shown in Figure 4.6(a).  We aim to determine whether a noticeable difference exists 

between the results in this experiment and Gaussian Experiment 2a.  We expect the 

resultant decision trees to be very similar to those produced in Gaussian Experiment 2a 

because the samples in both experiments are representative of each other.  In addition, 

we measure each splitmin at the same interval size relative to the total number of points 

as in Gaussian Experiment 2a. 

The classification metric results, shown in Figure 4.6(b, c, d, e, f), are highly 

correlated to those in Gaussian Experiment 2a.  Structurally, however, the decision trees 

for each splitting criterion become noticeably larger.  Despite the increase in size, the 

resultant plots, shown in Figure 4.6(g, h, i), retain shapes that are similar to those in 

Experiment 2a.  The Gini Index, Twoing Rule, and Rough Product splitting criteria 

produce nearly equivalent decision trees, with differences caused only by their split 

value selection methods, as in Experiment 2a.  Moreover, as before, the MDR splitting 

criterion generates completely different trees with a noticeably lower mean node count, 

depth, and complexity. 

 
 
 
 
 



 

 

 

(a) 

Figure 4.6: Gaussian Experiment 2b.  The data set (a) is constructed such that 1500 
blue three-dimensional points come from N(5,1) and 1500 red three-dimensional points 
come from N(8,1).  Provided are the fold mean results for the mean accuracy (b), mean 
error rate (c), mean precision (d), mean recall (e), mean F-measure (f), mean node count 
(g), mean tree depth (h), and mean complexity (i) for the Gini Index (blue crosses), 
Twoing Rule (green square), Maximum Deviance Reduction (magenta circles) and 
Rough Product (red ‘x’s) splitting criteria.  (This figure is presented in color; the black 
and white reproduction may not be an accurate representation.) 

  72



 

Figure 4.6 – Continued 

 

 

 

 

 

(b) 

  73



 

Figure 4.6 – Continued 

 

 

 

 

 

(c) 

  74



 

Figure 4.6 – Continued 

 

 

 

 

 

(d) 

  75



 

Figure 4.6 – Continued 

 

 

 

 

 

(e) 

  76



 

Figure 4.6 – Continued 

 

 

 

 

 

(f) 

  77



 

Figure 4.6 – Continued 

 

 

 

 

 

(g) 

  78



 

Figure 4.6 – Continued 

 

 

 

 

 

(h) 

  79



 

Figure 4.6 – Continued 

 

 

 

 

 

(i) 

  80



 

  81

4.2.1.4   Gaussian Experiment 3a – Moderately Noisy Case with Low Density
 

This experiment is the first reasonably challenging test on the splitting criteria.  

We position the Gaussian distribution clusters closer to each other, such that they 

significantly overlap.  The blue distribution contains 150 points that belong to N(5,1),  

whereas the red distribution contains 150 points that belong to N(6,1), as depicted in 

Figure 4.7(a).  While there is more noise between the clusters, we still observe definite 

areas of high concentration in each distribution.  Our interest firstly lies in whether the 

splitting criteria can successfully separate the relevant areas of the data set from the 

noisy areas of the data set.  Secondly, we are interested in the similarities and 

differences between the classification and structural metric results. 

The classification metrics for each splitting criterion, despite having more 

variance per splitmin, are similar, as shown in Figure 4.7(b, c, d, e, f).  The Gini Index 

and Twoing Rule both on average perform better than the other criteria across all 

splitmins.  An interesting observation however is the Rough Product has the best 

predictions overall of any splitting criterion between splitmins 41 and 61.  In addition, 

the Rough Product generally tends to be the simplest criterion in a structural sense, as 

shown in Figure 4.7(g, h, i). 

 
4.2.1.5   Gaussian Experiment 3b – Moderately Noisy Case with High Density 

 
As in Gaussian Experiment 3a, the Gaussian distribution clusters remain close to 

each other and significantly overlap.  However, we increase the density of each 

distribution cluster by an order of magnitude, such that each class contains 1500 data 

points.  The blue distribution contains points that belong to N(5,1), whereas the red 2b,  



 

 

(a) 

Figure 4.7: Gaussian Experiment 3a.  The data set (a) is constructed such that 150 blue 
three-dimensional points come from N(5,1) and 150 red three-dimensional points come 
from N(6,1).  Provided are the fold mean results for the mean accuracy (b), mean error 
rate (c), mean precision (d), mean recall (e), mean F-measure (f), mean node count (g), 
mean tree depth (h), and mean complexity (i) for the Gini Index (blue crosses), Twoing 
Rule (green square), Maximum Deviance Reduction (magenta circles) and Rough 
Product (red ‘x’s) splitting criteria.  (This figure is presented in color; the black and 
white reproduction may not be an accurate representation.)

  82



 

Figure 4.7 – Continued 
 

 

 

 

 

(b) 

  83



 

Figure 4.7 – Continued 

 

 

 

 

 

(c) 

  84



 

Figure 4.7 – Continued 

 

 

 

 

 

(d) 

  85



 

Figure 4.7 – Continued 

 

 

 

 

 

(e) 

  86



 

Figure 4.7 – Continued 

 

 

 

 

 

(f) 

  87



 

Figure 4.7 – Continued 

 

 

 

 

 

(g) 

  88



 

Figure 4.7 – Continued 

 

 

 

 

 

(h) 

  89



 

Figure 4.7 – Continued 

 

 

 

 

 

(i) 

  90



 

  91

distribution contains points that belong to N(6,1), as shown in Figure 4.8(a).  We aim to 

determine whether a noticeable difference exists between the results in this experiment 

and those in Gaussian Experiment 3a.  Based on the results from Experiments 2a and 

we expect the resultant decision trees in this experiment to be very similar to those 

produced in Gaussian Experiment 3a. 

The classification metric results show very little variance between the splitting 

criteria at each splitmin.  This may be due to the increased density in each distribution.  

The higher scatter in Experiment 3a may have made it more difficult to model the 

decision classes accurately and as such, the results from those test sets may have been 

less stable.  Despite this difficulty, the classification results of this experiment, as 

shown in Figure 4.8(b, c, d, e, f), are similar to those in Experiment 3a.  For the 

structural metrics, shown in Figure 4.8(g, h, i), we observe an overall dramatic decrease 

in tree depth and complexity for all the splitting criterions when compared to the same 

results in Experiment 3a.  Interestingly, this phenomenon did not occur in Experiment 

2a and 2b.  Nevertheless, the Rough Product produces the lowest mean tree depth and 

mean complexity across all folds. 

 
4.2.1.6   Gaussian Experiment 4a – Non-Separable Case with Low Density 

 
In this experiment, we position the Gaussian distribution clusters in the exact 

same location, such that each cluster is practically indistinguishable from the other.  

Each distribution cluster contains 150 points that belong to N(5,1) , as shown in  

Figure 4.9(a).  We aim to determine the behavior of the splitting criteria in response to 

data that is intrinsically unclassifiable. 



 

 

(a) 

Figure 4.8: Gaussian Experiment 3b.  The data set (a) is constructed such that 1500 
blue three-dimensional points come from N(5,1) and 1500 red three-dimensional points 
come from N(6,1).  Provided are the fold mean results for the mean accuracy (b), mean 
error rate (c), mean precision (d), mean recall (e), mean F-measure (f), mean node count 
(g), mean tree depth (h), and mean complexity (i) for the Gini Index (blue crosses), 
Twoing Rule (green square), Maximum Deviance Reduction (magenta circles) and 
Rough Product (red ‘x’s) splitting criteria.  (This figure is presented in color; the black 
and white reproduction may not be an accurate representation.) 

  92



 

Figure 4.8 – Continued 

 

 

 

 

 

(b) 

  93



 

Figure 4.8 – Continued 

 

 

 

 

 

(c) 

  94



 

Figure 4.8 – Continued 

 

 

 

 

 

(d) 

  95



 

Figure 4.8 – Continued 

 

 

 

 

 

(e) 

  96



 

Figure 4.8 – Continued 

 

 

 

 

 

(f) 

  97



 

Figure 4.8 – Continued 

 

 

 

 

 

(g) 

  98



 

Figure 4.8 – Continued 

 

 

 

 

 

(h) 

  99



 

Figure 4.8 – Continued 

 

 

 

 

 

(i) 

  100



 

  101

The classification metric results, shown in Figure 4.9 (b, c, d, e, f) show that the 

splitting criteria behave as expected.  The criteria choose splits that do not produce 

significant classification improvements.  However, despite this observation, the 

relatively steep gradient between splitmins 261 and 271 implies that initial splits at the 

root of the tree cause the greatest classification improvements, independent of the noise 

in the data.  The structural metric results, shown in Figure 4.9(g, h, i), are surprising.  

The Rough Product splitting criterion node count, tree depth, and complexity are, on 

average, 25% to 50% lower than the corresponding results for the Gini Index, Twoing 

Rule, and MDR splitting criteria.  This phenomenon exists in Experiments 3a and 3b, 

but is much more pronounced in this experiment.  In the presence of high noise, the 

Rough Product splitting criterion appears to keep the structural complexity low. 

 
4.2.1.7   Gaussian Experiment 4b – Non-Separable Case with High Density 

 
As in Experiment 4a, we position two Gaussian distribution clusters in the exact 

same location, such that each cluster is practically indistinguishable from the other.  

However, we increase the density of each distribution by an order of magnitude, shown 

in Figure 4.10(a), such that each cluster contains 1500 data points.  We aim to 

determine whether a noticeable difference exists between the results in this experiment 

and Gaussian Experiment 4a, regarding the structural metric results with particular 

interest. 

The classification metric results, as shown in Figure 4.10 (b, c, d, e, f) are 

consistent with those in Experiment 4a.  In addition, the variance between the splitting  

 



 

 

(a) 

Figure 4.9: Gaussian Experiment 4a.  The data set (a) is constructed such that 150 blue 
three-dimensional points come from N(5,1) and 150 red three-dimensional points come 
from N(5,1).  Provided are the fold mean results for the mean accuracy (b), mean error 
rate (c), mean precision (d), mean recall (e), mean F-measure (f), mean node count (g), 
mean tree depth (h), and mean complexity (i) for the Gini Index (blue crosses), Twoing 
Rule (green square), Maximum Deviance Reduction (magenta circles) and Rough 
Product (red ‘x’s) splitting criteria.  (This figure is presented in color; the black and 
white reproduction may not be an accurate representation.) 

  102



 

Figure 4.9 – Continued 

 

 

 

 

 

(b) 

  103



 

Figure 4.9 – Continued 

 

 

 

 

 

(c) 

  104



 

Figure 4.9 – Continued 

 

 

 

 

 

(d) 

  105



 

Figure 4.9 – Continued 

 

 

 

 

 

(e) 

  106



 

Figure 4.9 – Continued 

 

 

 

 

 

(f) 

  107



 

Figure 4.9 – Continued 

 

 

 

 

 

(g) 

  108



 

Figure 4.9 – Continued 

 

 

 

 

 

(h) 

  109



 

Figure 4.9 – Continued 

 

 

 

 

 

(i) 

  110



 

  111

criterion results at each splitmin is much smaller due to the increased density, which is 

consistent with the results in Experiment 3b. 

The structural metric results for the Rough Product splitting criterion are 

significantly lower than those for the Gini Index, Twoing Rule, and MDR splitting 

criteria, as shown in Figure 4.10(g, h, i).  Unexpectedly, we also see that the mean tree 

depth and  mean complexity for the Rough Product did not change from Experiment 4a. 

 
4.2.2   Real World Data Sets 
 

In this subsection, we evaluate our splitting criteria using the following real-

world data sets: the Wisconsin Breast Cancer Database, the Top Five Cancers Data Set, 

and the U.S. Income Data Set.  Each data set contains unique characteristics that put 

different stresses on the splitting criteria.  The Wisconsin Breast Cancer Database 

forces each splitting criterion to evaluate a substantial number of splits at each node 

before selecting the preferred split.  The Top Five Cancers Data Set contains a small 

number of attributes that classify to several decision values.  The U.S. Income Data Set 

provides a comprehensive experiment due to its balanced mixture of numerical and 

categorical attributes. 

 
4.2.2.1   Wisconsin Breast Cancer Database 

 
In this experiment, we use the Wisconsin Breast Cancer Database that Dr. 

William H. Wolberg (University of Wisconsin Hospitals) made available to the public.  

The data contains various breast biopsy measurements collected by oncologists through 

fine needle aspiration.  Its objective is to identify benign or malignant breast cancers.  

The data set contains 699 samples, each containing ten numerical attributes (with values  



 

 

 

(a) 

Figure 4.10: Gaussian Experiment 4b.  The data set (a) is constructed such that 1500 
blue three-dimensional points come from N(5,1) and 1500 red three-dimensional points 
come from N(5,1).  Provided are the fold mean results for the mean accuracy (b), mean 
error rate (c), mean precision (d), mean recall (e), mean F-measure (f), mean node count 
(g), mean tree depth (h), and mean complexity (i) for the Gini Index (blue crosses), 
Twoing Rule (green square), Maximum Deviance Reduction (magenta circles) and 
Rough Product (red ‘x’s) splitting criteria.  (This figure is presented in color; the black 
and white reproduction may not be an accurate representation.) 
  112



 

Figure 4.10 – Continued 

 

 

 

 

 

(b) 

  113



 

Figure 4.10 – Continued 

 

 

 

 

 

(c) 

  114



 

Figure 4.10 – Continued 

 

 

 

 

 

(d) 

  115



 

Figure 4.10 – Continued 

 

 

 

 

 

(e) 

  116



 

Figure 4.10 – Continued 

 

 

 

 

 

(f) 

  117



 

Figure 4.10 – Continued 

 

 

 

 

 

(g) 

  118



 

Figure 4.10 – Continued 

 

 

 

 

 

(h) 

  119



 

Figure 4.10 – Continued 

 

 

 

 

 

(i) 

  120



 

  121

ranging from one to ten) and one categorical attribute (with values of either “benign” or 

“malignant”).  Sixteen samples contain missing data, and therefore are not included in 

the experiment. 

Our experiment uses 10-folds cross validation to evaluate the splitting criteria.  

Our splitmins range from 1 to 685 at a step interval of twenty, and provide the same 

training and testing sets without biases or cost functions to each tree-growing algorithm.  

The classification metric results, shown as Figure 4.11(a, b, c, d, e), show that the 

Rough Product splitting criterion produces the exact same results as the Gini Index and 

Twoing Rule, which, on average, are slightly better than those for the MDR splitting 

criterion.  Structurally, however, the MDR splitting criterion generally produces 

decision trees with lower mean node count, mean tree depth, and mean complexity than 

the Gini Index, Twoing Rule, and Rough Product splitting criteria, as shown in Figure 

4.11(g, h, i).  As such, for this data set, we do not prefer a splitting criterion over 

another, as the choice is dependent on application-specific criteria.  That is, the splitting 

criterion choice depends on whether the classification accuracy or classification speed 

is more important for the given application. 

 
4.2.2.2   Top Five Cancers Data Set 

 
In this experiment, we use Invasive Cancer Incidence data from the United 

States Center for Disease Control and Prevention (CDC) National Program of Cancer 

Registries (NPCR).  The CDC provides the Wide-ranging ONline Data for 

Epidemiologic Research (WONDER) tool to extract publicly available data for research 

and statistical purposes.  We extracted data that identifies one of the five most likely  



 

 

 

 

 

(a) 

 

Figure 4.11: Wisconsin Breast Cancer Data Set.  Provided are the fold mean results for 
the mean accuracy (a), mean error rate (b), mean precision (c), mean recall (d), mean F-
measure (e), mean node count (f), mean tree depth (g), and mean complexity (h) for the 
Gini Index (blue crosses), Twoing Rule (green square), Maximum Deviance Reduction 
(magenta circles) and Rough Product (red ‘x’s) splitting criteria.  (This figure is 
presented in color; the black and white reproduction may not be an accurate 
representation.) 

  122



 

Figure 4.11 – Continued 

 

 

 

 

 

(b) 

  123



 

Figure 4.11 – Continued 

 

 

 

 

 

(c) 

  124



 

Figure 4.11 – Continued 

 

 

 

 

 

(d) 

  125



 

Figure 4.11 – Continued 

 

 

 

 

 

(e) 

  126



 

Figure 4.11 – Continued 

 

 

 

 

 

(f) 

  127



 

Figure 4.11 – Continued 

 

 

 

 

 

(g) 

  128



 

Figure 4.11 – Continued 

 

 

 

 

 

 

(h) 

  129



 

  130

locations of cancer (“Breast,” “Lung,” “Ovary,” “Prostate,” or “Stomach”) from a small 

number of attributes about an individual.  Our data set contains 2897 samples, each 

containing one numerical attribute (with values that belong to the range of positive 

whole numbers) and three categorical attributes (Race, Gender, and Age Range). 

Our experiment uses 10-folds cross validation to evaluate the splitting criteria.  

We cover splitmins that range from 1 to 2601 at a step interval of 100, and provide the 

same training and testing sets without biases or cost functions to each tree-growing 

algorithm. 

The classification metric results, as shown in Figure 4.12(a, b, c, d, e), show that 

none of the splitting criteria produce useful decision tree classifiers.  We conclude this 

by observing the small amounts of variance and generally flat shape in the mean 

accuracy plot (Figure 4.12a).  The variance indicates that no splitting criteria perform 

prominently better while the flat shape suggests that additional splits do not 

significantly improve the overall tree quality.  We make this conclusion despite several 

interesting results for the MDR splitting criterion between splitmins 801 and 1201 in 

Figure 4.12(c, d, e).  In this range, the MDR’s mean precision, recall, and F-measure 

values are significantly greater than the corresponding values in the Gini Index, Twoing 

Rule, and Rough Product splitting criteria.  However, these results give false 

impressions.  A closer inspection of this splitmin range indicates that the MDR splitting 

criterion produces a considerably high percentage of true positive counts for the 

“Ovary” value, whereas the Gini Index, Twoing Rule, and Rough Product do not.  This 

result is perplexing because the Maximum Deviance Reduction does not exhibit a 

significant boost in accuracy relative to the other criteria.  However, we discover that,  



 

 

 

 

 

(a) 

 

Figure 4.12: Five Cancers Data Set.  Provided are the fold mean results for the mean 
accuracy (a), mean error rate (b), mean precision (c), mean recall (d), mean F-measure 
(e), mean node count (f), mean tree depth (g), and mean complexity (h) for the Gini 
Index (blue crosses), Twoing Rule (green square), Maximum Deviance Reduction 
(magenta circles) and Rough Product (red ‘x’s) splitting criteria.  (This figure is 
presented in color; the black and white reproduction may not be an accurate 
representation.) 

  131



 

Figure 4.12 – Continued 

 

 

 

 

 

(b) 

  132



 

Figure 4.12 – Continued 

 

 

 

 

 

(c) 

  133



 

Figure 4.12 – Continued 

 

 

 

 

 

(d) 

  134



 

Figure 4.12 – Continued 

 

 

 

 

 

(e) 

  135



 

Figure 4.12 – Continued 

 

 

 

 

 

(f) 

  136



 

Figure 4.12 – Continued 

 

 

 

 

 

(g) 

  137



 

Figure 4.12 – Continued 

 

 

 

 

 

(h) 

  138



 

  139

despite the large true positive counts, MDR also produces large false negative counts, 

whereas the Gini Index, Twoing Rule, and Rough Product do not in this splitmin range.  

That is, the high accuracy of the Gini Index, Twoing Rule, and Rough Product is 

predominantly due to large true negative counts. 

In terms of mean node count, mean tree depth, and mean complexity, the 

structural metric results, shown in Figure 4.12(f, g, h), show no significant differences 

between the splitting criteria.  The Rough Product splitting criterion seems to follow the 

structure of the Gini Index splitting criterion more closely than the other splitting 

criteria. 

 
4.2.2.3   United States Income Data Set 

 
In this experiment, we use United State Census Bureau data from the University 

of California Irving Machine Learning Repository.  The data contains 48,842 U.S. 

citizens, each containing six numerical attributes and eight categorical attributes, for the 

purposes of classifying citizens that have an income less than $50,000.  We randomly 

chose 497 samples from the original data set.  Using the entire original data set is 

unnecessary since our objective is to evaluate the splitting criteria and not produce the 

best performing classifiers. 

Our experiment uses 10-folds cross validation to evaluate the splitting criteria.  

We cover splitmins ranging from 1 to 500 at a step interval of five, and provide the 

same training and testing sets without biases or cost functions to each tree-growing 

algorithm. 



 

  140

The classification metric results, shown in Figure 4.13(a, b, c, d, e), clearly show 

that the Rough Product splitting criterion outperforms the Gini Index, Twoing Rule, and 

MDR splitting criteria.  However, the Rough Product’s increased classification 

accuracy also causes an increase in structural size and complexity, as shown in Figure 

4.13(g, h, i).  Despite this result, the Rough Product splitting criterion is still preferred 

for this data set because the Gini Index, Twoing Rule, and MDR splitting criteria do not 

produce trees that substantially classify better than blindly guessing the most common 

decision value. 

 
Conclusion 

 
In this chapter, we evaluated the Gini Index, Twoing Rule, Maximum Deviance 

Reduction, and Rough Product splitting criteria on various data sets.  We performed k-

folds cross validation using the EvalTreeGUI tool to measure several classification and 

structural metrics.   The experiments showed that in data with low noise between 

decision classes, the Rough Product splitting criterion generally performs as well as the 

Gini Index or Twoing Rule splitting criteria across all metrics.  In terms of the 

classification metrics, our experiment with the U.S. Census Income data set showed that 

the Rough Product splitting criterion produces meaningful splits when the Gini Index, 

Twoing Rule, and MDR splitting criteria do not.  In terms of tree structure, the 

Gaussian Experiments showed that the Rough Product splitting criterion provides 

strikingly large reductions in node count, tree depth and complexity in response to 

increased noise between decision classes.  This result suggest that, in the presence of 

noisy data, the Rough Product splitting criterion could construct binary decision trees 



 

  141

that are simpler and shorter than those produced by the Gini Index, Twoing Rule, or 

Maximum Deviance Reduction splitting criteria.  Although our study does not presume 

the superiority of any single splitting criterion, we conclude that the Rough Product 

splitting criterion is a viable option for binary decision tree construction. 



 

 

 

 

 

(a) 

 

Figure 4.13: United States Income Data Set.  Provided are the fold mean results for the 
mean accuracy (a), mean error rate (b), mean precision (c), mean recall (d), mean F-
measure (e), mean node count (f), mean tree depth (g), and mean complexity (h) for the 
Gini Index (blue crosses), Twoing Rule (green square), Maximum Deviance Reduction 
(magenta circles) and Rough Product (red ‘x’s) splitting criteria.  (This figure is 
presented in color; the black and white reproduction may not be an accurate 
representation.) 

  142



 

Figure 4.13 – Continued 

 

 

 

 

 

(b) 

  143



 

Figure 4.13 – Continued 

 

 

 

 

 

(c) 

  144



 

Figure 4.13 – Continued 

 

 

 

 

 

(d) 

  145



 

Figure 4.13 – Continued 

 

 

 

 

 

(e) 

  146



 

Figure 4.13 – Continued 

 

 

 

 

 

(f) 

  147



 

Figure 4.13 – Continued 

 

 

 

 

 

(g) 

  148



 

Figure 4.13 – Continued 

 

 

 

 

 

(h) 

 

  149



 

  150

 
 
 

CHAPTER FIVE 
 

CONCLUSIONS AND FUTURE WORK 
 
 

Conclusions 
 

 Our research aimed to advance induction techniques for pattern classification 

using rough set theory as a basis.  To narrow our scope in this broad objective, we 

chose to work with binary decision tree classifiers.  We saw that decision tree 

optimization is in the class of NP-complete [17], meaning it requires exponential time 

complexity in a deterministic algorithm to ensure an optimal decision tree structure.  

Therefore, numerous researchers have developed heuristics in an effort to determine 

near-optimal decision trees in polynomial time.  We reviewed various preprocessing 

methods, splitting criteria, stopping criteria, and pruning methods typically applied to 

decision tree construction.  In addition, we reviewed rough set theory and several 

algorithms that use it for feature selection.  We then proposed a new measure of 

information based on rough set theory (which we call the rough product) to help us 

understand the manner in which an attribute value partition will affect the upper 

approximation for each decision class.  We subsequently applied the rough product in a 

splitting criterion for a binary decision tree classifier.  We evaluated this criterion 

against the Gini Index, Twoing Rule, and Maximum Deviance Reduction splitting 

criteria using k-folds cross validation.  Using several classification and structural 

metrics, we compared the performance of each splitting criterion on artificial Gaussian 

distribution cluster data sets and real-world data sets.  For the Gaussian clusters, we 



 

  151

observed that the Rough Product splitting criterion provided strikingly large reductions 

in tree depth and complexity in response to increased noise between decision classes.  

For the real-world data sets, we observed that the Rough Product splitting criterion 

generally performed as well as or better than competing splitting criteria for all metrics.  

We conclude that the Rough Product measure of information has the potential to 

improve induction in classification models.  In particular, we conclude that the Rough 

Product splitting criterion provides a viable option for binary decision tree construction. 

The empirical results suggest that, in the presence of noisy data, the Rough Product 

splitting criterion could be useful in constructing simpler, shorter trees than the Gini 

Index, Twoing Rule, or Maximum Deviance Reduction splitting criteria. 

 
Future Work 

 
The objective for future endeavors will remain the same – to improve induction 

for pattern recognition applications.  The work completed in this thesis will serve as the 

root for these endeavors that may potentially branch out in the following directions: 

1. Study the Rough Product splitting criterion for binary decision trees with 

more artificially generated and real-world data sets. 

2. Search for strengths and weaknesses in the proposed Rough Product 

measure of information and derive ways to improve the weaknesses. 

3. Extend the binary Rough Product splitting criterion into an n-ary Rough 

Product splitting criterion. 

4. Apply and study the effectiveness of the Rough Product as the information 

function in various information-based algorithms. 



 

  152

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

APPENDIX 
 

EXPERIMENTAL RESULTS SUMMARY TABLES 



 

  153

 
 
 
 
Table A.1 
 
Mean of Mean Accuracy (MMA) for the Fold Mean. 
 

 
Experiment 

 

 
Gini Index 

 

 
Twoing Rule 

 

 
MDR 

 

 
Rough Product 
 

 
Gaussian 1 

 

 
0.9201 

 
0.9201 

 
0.9201 

 
0.9229 

Gaussian 2a 
 

0.8818 0.8819 0.8777 0.883 

Gaussian 2b 
 

0.8943 0.8943 0.8912 0.8943 

Gaussian 3a 
 

0.7110 0.7111 0.7030 0.7078 

Gaussian 3b 
 

0.6712 0.6712 0.6692 0.6720 

Gaussian 4a 
 

0.4902 0.4915 0.4872 0.5090 

Gaussian 4b 
 

0.4955 0.4955 0.4925 0.5048 

Breast Cancer 
 

0.9016 0.9016 0.8938 0.9016 

Five Cancers 
 

0.7825 0.7826 0.7836 0.7819 

Income 
 

0.7713 0.7713 0.771 0.7887 

 
Note:  The table shows that the Rough Product splitting criterion performed, on 
average, as well as or marginally better than the Gini Index, Twoing Rule, and MDR 
splitting criteria.  Note that in the Income experiment, the Rough Product performed 
noticeably better.  We also see that the Gini Index and Twoing Rule criteria have 
practically equivalent MMA for most data sets. 



 

  154

 
 
 
 
Table A.2 
 
Mean of Mean Error Rate (MMER) for the Fold Mean. 
 

 
Experiment 

 

 
Gini Index 

 

 
Twoing Rule 

 

 
MDR 

 

 
Rough Product 
 

 
Gaussian 1 

 

 
0.0799 

 
0.0799 

 
0.0799 

 
0.0771 

Gaussian 2a 
 

0.1182 0.1181 0.1223 0.1170 

Gaussian 2b 
 

0.1057 0.1057 0.1088 0.1057 

Gaussian 3a 
 

0.2890 0.2889 0.2970 0.2922 

Gaussian 3b 
 

0.3288 0.3288 0.3308 0.3280 

Gaussian 4a 
 

0.5098 0.5085 0.5128 0.4910 

Gaussian 4b 
 

0.5045 0.5045 0.5075 0.4952 

Breast Cancer 
 

0.0984 0.0984 0.1062 0.0984 

Five Cancers 
 

0.2175 0.2165 0.2164 0.2181 

Income 
 

0.2287 0.2287 0.229 0.2113 

 
Note:  The table shows that the Rough Product splitting criterion performed, on 
average, as well as or marginally better than the Gini Index, Twoing Rule, and MDR 
splitting criteria.  Note that in the Income experiment, the Rough Product performed 
noticeably better.  We also see that the Gini Index and Twoing Rule criteria have 
practically equivalent MMA for most data sets. 



 

  155

 
 
 
 
Table A.3 
 
Mean of Mean Precision (MMP) for the Fold Mean. 
 

 
Experiment 

 

 
Gini Index 

 

 
Twoing Rule 

 

 
MDR 

 

 
Rough Product 
 

 
Gaussian 1 

 

 
0.9291 

 
0.9291 

 
0.9291 

 
0.9328 

Gaussian 2a 
 

0.8925 0.8926 0.8878 0.8942 

Gaussian 2b 
 

0.8998 0.8998 0.8967 0.8999 

Gaussian 3a 
 

0.7128 0.7128 0.7034 0.7093 

Gaussian 3b 
 

0.6758 0.6759 0.6736 0.6759 

Gaussian 4a 
 

0.4960 0.4966 0.4940 0.5129 

Gaussian 4b 
 

0.5035 0.5034 0.5010 0.5114 

Breast Cancer 
 

0.8839 0.8839 0.8818 0.8836 

Five Cancers 
 

0.3996 0.4038 0.4154 0.4003 

Income 
 

0.5701 0.5701 0.5668 0.5897 

 
Note:  The table shows that the Rough Product splitting criterion performed, on 
average, as well as or marginally better than the Gini Index, Twoing Rule, and MDR 
splitting criteria.  Note that in the Gaussian 4a, Gaussian 4b, and Income experiments, 
the Rough Product performed noticeably better.  We also see that the Gini Index and 
Twoing Rule criteria have practically equivalent MMP for most data sets. 



 

  156

 
 
 
 
Table A.4 
 
Mean of Mean Recall (MMR) for the Fold Mean. 
 

 
Experiment 

 

 
Gini Index 

 

 
Twoing Rule 

 

 
MDR 

 

 
Rough Product 
 

 
Gaussian 1 

 

 
0.8934 

 
0.8934 

 
0.8934 

 
0.8956 

Gaussian 2a 
 

0.8542 0.8543 0.8506 0.8546 

Gaussian 2b 
 

0.8645 0.8645 0.8614 0.8646 

Gaussian 3a 
 

0.7246 0.7246 0.7176 0.7182 

Gaussian 3b 
 

0.6452 0.6452 0.6440 0.6453 

Gaussian 4a 
 

0.4583 0.4604 0.4543 0.4757 

Gaussian 4b 
 

0.4699 0.4699 0.4673 0.4769 

Breast Cancer 
 

0.8596 0.8596 0.8488 0.8599 

Five Cancers 
 

0.2656 0.2681 0.2723 0.2624 

Income 
 

0.5203 0.5204 0.519 0.5456 

 
Note:  The table shows that the Rough Product splitting criterion performed, on 
average, as well as or marginally better than the Gini Index, Twoing Rule, and MDR 
splitting criteria.  Note that in the Gaussian 4a, Gaussian 4b, and Income experiments, 
the Rough Product performed noticeably better.  We also see that the Gini Index and 
Twoing Rule criteria have practically equivalent MMR for most data sets. 
 



 

  157

 
 
 
 
Table A.5 
 
Mean of Mean F-Measure (MMFM) for the Fold Mean. 
 

 
Experiment 

 

 
Gini Index 

 

 
Twoing Rule 

 

 
MDR 

 

 
Rough Product 
 

 
Gaussian 1 

 

 
0.9035 

 
0.9035 

 
0.9035 

 
0.9065 

Gaussian 2a 
 

0.8637 0.8638 0.8594 0.865 

Gaussian 2b 
 

0.8755 0.8755 0.8723 0.8755 

Gaussian 3a 
 

0.7024 0.7025 0.6935 0.7007 

Gaussian 3b 
 

0.6494 0.6495 0.6469 0.6500 

Gaussian 4a 
 

0.4582 0.4588 0.4537 0.4763 

Gaussian 4b 
 

0.4644 0.4644 0.4614 0.4806 

Breast Cancer 
 

0.8669 0.8669 0.8596 0.8669 

Five Cancers 
 

0.3028 0.3059 0.3117 0.3001 

Income 
 

0.5359 0.5359 0.5323 0.5577 

 
Note:  The table shows that the Rough Product splitting criterion performed, on 
average, as well as or marginally better than the Gini Index, Twoing Rule, and MDR 
splitting criteria.  Note that in the Gaussian 4a, Gaussian 4b, and Income experiments, 
the Rough Product performed noticeably better.  We also see that the Gini Index and 
Twoing Rule criteria have practically equivalent MMFM for most data sets. 



 

  158

 
 
 
 
Table A.6 
 
Mean of Mean Node Count (MMNC) for the Fold Mean. 
 

 
Experiment 

 

 
Gini Index 

 

 
Twoing Rule 

 

 
MDR 

 

 
Rough Product 
 

 
Gaussian 1 

 

 
2.742 

 
2.742 

 
2.742 

 
2.742 

Gaussian 2a 
 

4.935 4.935 4.452 4.929 

Gaussian 2b 
 

7.6 7.6 7.039 7.587 

Gaussian 3a 
 

17.63 17.64 17.37 16.63 

Gaussian 3b 
 

41.23 41.23 40.32 40.53 

Gaussian 4a 
 

18.82 18.8 21.69 14.81 

Gaussian 4b 
 

77.62 77.37 83.41 65.66 

Breast Cancer 
 

7.52 7.52 6.006 7.463 

Five Cancers 
 

78.84 78.81 78.95 80.61 

Income 
 

10.49 10.52 10 11.61 

 
Note:  The table shows the Rough Product splitting criterion correlating strongly to the 
Gini Index and Twoing Rule splitting criteria in data sets with low noise.  However, as 
the noise increases, the Rough Product MMNC increases more slowly than the MMNC 
for the Gini Index and Twoing Rule splitting criteria.  In fact, we see that the Rough 
Product splitting criterion producing significantly lower MMNCs for Gaussian 
Experiments 4a and 4b against all splitting criteria.  This result suggests that the Rough 
Product splitting criterion may be useful in ensuring simpler trees in the presence of 
noisy data. 



 

  159

 
 
 
 
Table A.7 
 
Mean of Mean Depth Count (MMDC) for the Fold Mean. 
 

 
Experiment 

 

 
Gini Index 

 

 
Twoing Rule 

 

 
MDR 

 

 
Rough Product 
 

 
Gaussian 1 

 

 
0.5806 

 
0.5806 

 
0.5806 

 
0.5806 

Gaussian 2a 
 

0.9832 0.9832 0.9195 0.9819 

Gaussian 2b 
 

1.247 1.247 1.178 1.246 

Gaussian 3a 
 

2.259 2.259 2.305 2.0960 

Gaussian 3b 
 

1.431 1.431 1.440 1.356 

Gaussian 4a 
 

2.617 2.620 3.211 1.644 

Gaussian 4b 
 

4.395 4.394 5.731 1.639 

Breast Cancer 
 

1.425 1.425 1.117 1.417 

Five Cancers 
 

1.685 1.709 1.757 1.676 

Income 
 

1.355 1.356 1.34 1.484 

 
Note:  The table shows the Rough Product splitting criterion correlating strongly to the 
Gini Index and Twoing Rule splitting criteria in data sets with low noise.  However, as 
the noise increases, the Rough Product MMDC increases more slowly than the MMDC 
for the Gini Index and Twoing Rule splitting criteria.  In fact, we see the Rough Product 
splitting criterion producing significantly lower MMDCs for Gaussian Experiments 4a 
and 4b against all splitting criteria.  In addition, the MMDC results between Gaussian 
Experiments 4a and 4b for the Rough Product splitting criterion show no change.  This 
result may suggest that the Rough Product splitting criterion could be useful in ensuring 
shorter trees in the presence of noisy data.  The result in the Five Cancers data set 
supports this hypothesis. 



 

  160

 
 
 
 
Table A.8 
 
Mean of Mean Complexity (MMC) for the Fold Mean. 
 

 
Experiment 

 

 
Gini Index 

 

 
Twoing Rule 

 

 
MDR 

 

 
Rough Product 
 

 
Gaussian 1 

 

 
0.871 

 
0.871 

 
0.871 

 
0.871 

Gaussian 2a 
 

1.376 1.376 1.260 1.372 

Gaussian 2b 
 

1.784 1.784 1.627 1.782 

Gaussian 3a 
 

2.737 2.738 2.596 2.585 

Gaussian 3b 
 

1.731 1.731 1.671 1.661 

Gaussian 4a 
 

3.378 3.381 4.085 2.012 

Gaussian 4b 
 

5.439 5.439 7.175 2.035 

Breast Cancer 
 

1.91 1.91 1.402 1.909 

Five Cancers 
 

2.004 2.041 2.083 2.016 

Income 
 

1.512 1.513 1.323 1.791 

 
Note:  The table shows the Rough Product splitting criterion correlating strongly to the 
Gini Index and Twoing Rule splitting criteria in data sets with low noise.  However, as 
the noise increases, the Rough Product MMC increases more slowly than the MMC for 
the Gini Index and Twoing Rule splitting criteria.  In fact, we see the Rough Product 
splitting criterion producing significantly lower MMCs for Gaussian Experiments 4a 
and 4b against all splitting criteria.  In addition, the MMC results between Gaussian 
Experiments 4a and 4b for the Rough Product splitting criterion show practically no 
change.  This result may suggest that the Rough Product splitting criterion could be 
useful in ensuring faster classification than other splitting criteria, especially when 
presented with noisy data. 

 



 

  161

 
 
 

REFERENCES 
 
 

[1] Aboul-Hassan S. and Bouchaffra D. (2001). Automotive Design Driven by Pattern 
Recognition. In: Proceedings of the Artificial Neural Network in Engineering 
(ANNIE’2001) Conference.  University of Missouri-Rolla. 4-7 November 2001. 

[2] Bohn C. (1997). An Incremental Unsupervised Learning Scheme for Function 
Approximation. In: Proceedings of the 1997 IEEE International Conference on 
Neural Networks (ICNN’97). Piscataway, NJ: IEEE Service Center. pp. 1792-
1797. 

[3] Bouchaffra D., Govindaraju V., and Srihari S.N. (1999). Recognition of Strings 
using Non-stationary Markovian Models: An Application to ZIP Code 
Recognition. In: Proceedings of the IEEE Computer Society Conference on 
Computer Vision and Pattern Recognition (CVPR’99). Fort Collins, Colorado, 
USA. 23-25 June 1999. 

[4] Bouchaffra D. and Tan J. (2006). Introduction to Structural Hidden Markov 
Models: Application to Handwritten Numeral Recognition. In Famili A. eds.: 
Intelligent Data Analysis Journal. IOS Press. 10(1). 

[5] Bouchaffra D. and Tan J. (2006). Structural Hidden Markov Models using a 
Relation of Equivalence: Application to Automotive Designs. In Webb G. eds.: 
Data Mining and Knowledge Discovery Journal. 12(1): 79-96. 

[6] Bouchaffra D. and Tan J. (2006). Protein Fold Recognition using a Structural 
Hidden Markov Model. In: Proceedings of the 18th International Conference on 
Pattern Recognition (ICPR). Hong Kong. 20-24 August 2006. 

[7] Breiman L., Friedman J., Olshen R., and Stone C. (1993) Classification and 
Regression Trees. New York: Chapman & Hall. 

[8] Brudnak M. (2005). Support Vector Methods for the Control of Unknown 
Nonlinear Systems. Ph.D. Thesis. Oakland University, Rochester MI, USA. 

[9] Capelle A.S., Alata O. Fernandez-Maloigne C., and Ferrie J.C. (2001). 
Unsupervised Algorithm for the Segmentation of Three-Dimensional Magnetic 
Resonance Brain Images. In: Proceedings for the International Conference on 
Image Processing (ICIP’01). 7-10 Oct 2001. 3: pp. 1047-1050. 

 



 

  162

[10] Clark A. (2001). Unsupervised Induction of Stochastic Context-Free Grammars 
Using Distributional Clustering. In Daelemans W., Zajac R.m eds.: Proceedings of 
5th Conference on Natural Language Learning (CoNLL-2001). Toulouse, France. 
pp. 105-112. 

[11] Cohen P., Heeringa B., and Adams N.M. (2002). An Unsupervised Algorithm for 
Segmenting Categorical Time-series into Episodes. In Hand D.J., Adams N.M., 
and Bolton R.J., eds.: Proceedings of the ESF Exploratory Workshop on Pattern 
Detection and Discovery (September 16-19, 2002). London: Springer-Verlag. 
LNCS 2447: pp. 49-62. 

[12] Duda R., Hart P., and Stork D. (2001). Pattern Classification. 2nd ed. Canada: 
John Wiley & Sons, Inc. pp. 1-19, 394-413, 454-458, 482-485. 

[13] Duntsch I. and Gunther, G. (2000). Rough Set Data Analysis. Encyclopedia of 
Computer Science and Technology. 43: pp. 281-301. 

[14] Esposito F., Maberba D., Semeraro G., and Tamma V. (1999). The Effects Of 
Pruning Methods On The Predictive Accuracy Of Induced Decision Trees. Applied 
Stochastic Models In Business And Industry. 15: pp. 277-299. 

[15] Herbert J. and Yao J. (2005). Time-Series Data Analysis with Rough Sets. 4th 
International Conference on Computational Intelligence in Economics and 
Finance (CIEF). Salt Lake City, UT, USA. 21-26 July 2005. pp. 908-911. 

[16] Hu X. (1995). Knowledge Discovery in Databases: An Attribute-Oriented Rough 
Set Approach. Ph.D. Thesis. University of Regina. Regina, Saskatchewan, 
Canada. 

[17] Hyafil L. and Rivest R. (1976). Constructing Optimal Binary Decision Trees is 
NP-Complete. Information Processing Letters. 5(1). 

[18] Kantardzic, M. (2003). Preparing The Data. In: Kartalopoulos V. Data Mining 
Concepts, Models, Methods, and Algorithms. Piscataway, NJ, USA: Wiley-IEEE 
Press. pp. 19-38. 

[19] Karlsen R., Gorsich D., and Gerhart G. (2000). Support Vector Machines and 
Target Classification. In: Proceedings of the 22nd Army Science Conference. 
Baltimore MD, USA. pp. 874-881. 

[20] Karlsen R., Gorsich D., and Gerhart G. (2001). Target Acquisition and Human 
Vision Modeling. In: Proceedings of the 12th Ground Vehicle Survivability 
Symposium. Monterey CA. 

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hyafil:Laurent.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/r/Rivest:Ronald_L=.html


 

  163

[21] Kohavi R. (1995). A Study of Cross-Validation and Bootstrap for Accuracy 
Estimation and Model Selection. In: Proceedings of the Fourteenth International 
Joint Conference on Artificial Intelligence. pp. 1137-1143. 

[22] Lixiang S. (2001). Data Mining Techniques Based on Rough Set Theory. Ph.D. 
Thesis, National University of Singapore, Singapore. 

[23] Modrzejewski M. (1993). Feature Selection using Rough Sets Theory. In Brazdil 
P.B. eds.: Proceedings of the European Conference on Machine Learning. 
Springer-Verlag. pp. 213-226. 

[24] Milde H., Hotz L., Kahl J., Neumann B., and Wessel S. (1999). MAD: A Real 
World Application of Qualitative Model-Based Decision Tree Generation for 
Diagnosis. In: Proceedings of Industrial and Engineering Applications for 
Artificial Intelligence and Expert Systems. pp. 246-255. 

[25] Moshkov M. (2005). Time Complexity of Decision Trees. In Peters J.F. and 
Skowron A eds.: Transactions on Rough Sets III. New York: Springer-Verlag. 
LNCS 3400, pp. 244-459. 

[26] Murthy S. (1998). Automatic Construction of Decision Trees From Data: A Multi-
Disciplinary Survey. Data Mining and Knowledge Discovery. Boston: Kluwer 
Academic Publishers. 2(4): pp. 345-389. 

[27] Nguyen H.S. and Nguyen S.H. (1999) An Application of Discretization Methods 
in Control. citeseer.ist.psu.edu/son99application.html 

[28] Oliver, N.M., Rosario B., and Pentland A. (2000). A Bayesian Computer Vision 
System for Modeling Human Interactions. IEEE Transactions on Pattern Analysis 
and Machine Intelligence. 22(8): pp. 831-843. 

[29] Pawlak Z. (1982). Rough Sets. International Journal of Computer Information 
Science. 11: pp. 341-356. 

[30] Pawlak Z. (2002). A Primer on Rough Sets - A New Approach To Drawing 
Conclusions From Data. Cardozo Law Review. 22: pp. 1407-1415. 

[31] Pawlak Z. (2005). A Treatise on Rough Sets. In Peters J.F. and Skowron A eds.: 
Transactions on Rough Sets IV. Berlin: Springer-Verlag. LNCS 3700: pp. 1-17. 

[32] Pechyony D. (2004). Decision Trees: More Theoretical Justification For Practical 
Algorithms. Masters Thesis. Tel-Aviv University. Tel-Aviv, Israel. 

[33] Quinlan J.R. (1986). Induction of decision trees. Machine Learning. 1(1): 81-106. 

[34] Quinlan J.R. and Rivest R.L. (1989). Inferring Decision Trees Using the Minimum 
Description Length Principle. Information and Computation. 80(3): pp. 227-248. 



 

  164

[35] Quinlan J.R. (1993). C4.5: Programs for Machine Learning. San Francisco: 
Morgan Kaufmann Publishers. 

[36] Rajagopalon A.N. and Chellappa R. (2000). Vehicle Detection and Tracking in 
Video. In: Proceedings of the International Conference on Image Processing 
(ICIP’00). Vancouver, BC, Canada. 1: pp. 351-354. 

[37] Safavian S. and Landgrebe D. (1991). A Survey of Decision Tree Classifier 
Methodology. IEEE Transactions on Systems, Man, and Cybernetics. 21(3): pp. 
660-674. 

[38] Shannon C.E. (1948). A Mathematical Theory of Communication. Reprinted with 
corrections from The Bell System Technical Journal, 27: pp. 379–423. 

[39] Shen Q. and Chouchoulas A. (2001). Rough Set-Based Dimensionality Reduction 
For Supervised and Unsupervised Learning. International Journal of Applied 
Mathematics and Computer Science. 11(3): pp. 583-601. 

[40] Shoshani L. and Bouchaffra D. (2001). Identification of Handwritten Digits Using 
K-Nearest Neighbor. In: Proceedings of the 2nd IEEE Electro-Information 
Technology Conference. Oakland University. 7-9 June 2001. 

[41] Sipser M. (1997). Time Complexity. In:  Introduction To The Theory Of 
Computation. Boston, MA: PWS Publishing Company. pp. 225-276. 

[42] Teutsch C., Berndt D., Trostmann E., and Weber M. (2006). Real-Time Detection 
of Elliptic Shapes for Automated Object Recognition and Object Tracking. In: 
Proceedings of Machine Vision Applications in Industrial Inspection XIV. 
Bellingham, Washington, USA. 15-19 January 2006. pp. 171-179. 

[43] Wei J., Wang S., Ma Z., and Huang D. (2002). Rough set based decision tree. In: 
Proceedings of the 4th World Congress on Intelligent Control and Automation. pp. 
426-431. 

[44] Wei J. (2003). Rough Set Based Approach to Selection of Node. International 
Journal of Computational Cognition. 1(2): pp. 25-40. 

[45] Yao J.T. and Zhang M. (2005). Feature Selection with Adjustable Criteria. In: 
Proceedings of the 9th International Conference on Rough Sets, Fuzzy Sets, Data 
Mining and Granular Computing (RSFDGrC'05). Regina, Saskatchewan, 
Candada. 1-3 September 2005. LNAI 3641: pp.204-213. 

[46] Zhang M. and Yao J.T. (2004). A Rough Sets Based Approach to Feature 
Selection. In: Proceedings of the 23rd International Conference of NAFIPS. 
Banff, Alberta, Canada. 27-30 June 2004. pp. 434-439. 



 

  165

[47] Zhong N., Dong J.Z., and Ohsuga, S. (2001).Using Rough Sets with Heuristics for 
Feature Selection. Journal of Intelligent Information Systems. 16: pp. 199-214. 

[48] Zhong N. and Skowron A. (2001). A Rough Set-Based Knowledge Discovery 
Process. International Journal of Applied Mathematics and Computer Science. 
11(3): pp. 603-619. 

[49] Zhou Q. (2003). Adaptive Knowledge Discovery Techniques for Data Mining, 
Ph.D. Thesis. University of Otago. Dunedin, New Zealand. 

[50] Zohdy M., Bouchaffra D., and Quinlan J. (2001). Optimal Mapping from 
Chromosome Space to Feature Space for Solving Sequential Pattern Recognition 
Problems. In: Proceeding for the IEEE Midwest Symposium on Circuit and 
Systems. Dayton, Ohio, USA. 14-17 August 2001. 

[51] Zorman M., Eich H., Stiglic B., Ohmann C., and Lenic M. (2002). Does Size 
Really Matter – Using a Decision Tree Approach for Comparison of Three 
Different Databases from the Medical Field of Acute Appendicitis. Journal of 
Medical Systems. 26(5): pp. 465-477. 


	Mikulski D - Master Thesis Final (Cover Page).doc
	Mikulski D - Master Thesis Final (Prelim Pages).doc
	Mikulski D - Master Thesis Final (Body).doc

